期刊文献+

局部微型加热下液滴表面温度分布特性 被引量:3

Surface temperature distribution of droplet heated by local microheater
下载PDF
导出
摘要 液滴表面温度分布直接影响液滴内部微流状况,而目前文献对液滴表面温度研究主要基于平板全局加热模式。采用MEMS集成工艺和红外热像分析手段,对基于中心局部微型加热下的液滴表面温度分布特性进行了实验研究。研究发现:局部加热液滴表面温度分布与平板全局加热液滴表面温度分布不同,呈现顶端温度高、边缘温度低的凸形温度分布规律;随着加热功率增加,液滴表面温度和温度梯度都会随之增加,而当加热功率增加到一定值后,液滴表面温度增幅趋于一致,表面温度梯度趋于稳定分布状态。同时对液滴局部沸腾时气泡破裂前后液滴表面温度分布进行了研究。研究结果有助于理解和控制液滴微流分布。 The temperature distribution of droplet surface directly influences the microflow inside the droplet, but most of the papers about droplet surface temperature are based on substrate heating mode. In this study, with the aid of the infrared thermograph and MEMS technology, both the surface temperature and the temperature gradient of the droplet were investigated based on local heating mode. It was found that different from the concave distribution of surface temperature in the substrate heating mode, the surface temperature of the droplet in the local heating mode showed a convex distribution with a higher temperature at the apex but a lower temperature at the edge. With the increase of heating power, both the surface temperature and the temperature gradient were increased. However, as the heating power reached a certain value, the surface temperature gradient increased less and finally tended to a uniform distribution. The surface temperature of the droplet before and after the bubble burst under local boiling was also investigated. The results presented in this paper help to understand the internal microflow of droplets in the local heating mode and manipulate the microflow inside droplets.
出处 《化工学报》 EI CAS CSCD 北大核心 2011年第11期3039-3045,共7页 CIESC Journal
基金 国家杰出青年科学基金项目(50925624) 国家重点基础研究发展计划项目(2012CB720404) 上海市曙光计划跟踪项目(08GG05)~~
关键词 液滴 局部加热 微型加热器 表面温度分布 温度梯度 droplet local heating microheater surface temperature distribution temperature gradient
  • 相关文献

参考文献17

  • 1王晓东,陆规,彭晓峰,张欣欣,王补宣.加热板上蒸发液滴动态特性的实验[J].航空动力学报,2006,21(6):1001-1007. 被引量:14
  • 2胡立舜,王兴军,高邈,于广锁,王辅臣,于遵宏.压力式喷嘴雾化过程气液传质性能[J].化工学报,2008,59(11):2733-2740. 被引量:6
  • 3赵峰鸣,马淳安,童少平,褚有群.喷雾热解法制备超细MnO_2及其电化学性能[J].化工学报,2005,56(5):925-931. 被引量:5
  • 4王亚青,刘明侯,刘东,徐侃.倾斜喷射时喷雾冷却无沸腾区换热特性[J].化工学报,2009,60(8):1912-1919. 被引量:13
  • 5Richter J, Seidel R, Kirsch R, Mertig M, Pompe W, Plaschke J, Schackert H K. Nanoscale palladium metallization of DNA[J].Advanced Materials, 2000, 12 (7): 507-510.
  • 6Hu H, Larson R G. Marangoni effect reverses coffee-ring depositions [J]. The Journal of Physical Chemistry B, 2006, 110 (14): 7090-7094.
  • 7Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A. Capillary flow as the cause of ring stains from dried liquid drops [J]. Nature, 1997, 389 (23): 827-829.
  • 8Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A. Contact line deposits in an evaporating drop [J]. PhysicalReviewE, 2000, 62 (1): 756-765.
  • 9Hu H, Larson R G; Aaalysis of the microfluid flow in an evaporating sessile droplet [J]. Langmuir, 2005, 21 (9) : 3963-3971.
  • 10Hu H, Larson R G. Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet [J].Langmuir, 2005, 21 (9): 3972-3980.

二级参考文献68

  • 1潘朝群,邓先和,张亚君.多级雾化超重力旋转床中气液间的传热[J].化工学报,2005,56(3):430-434. 被引量:19
  • 2林志勇,王晓东,彭晓峰.外形分析-拟合求导法测接触角[J].工程热物理学报,2005,26(5):847-849. 被引量:3
  • 3何曙,吴玉庭,姜曙,马重芳,葛满初.喷嘴对涡流管能量分离效应影响[J].化工学报,2005,56(11):2073-2076. 被引量:22
  • 4陶毓伽,淮秀兰,李志刚,蔡军.大功率固体激光器冷却技术进展[J].激光杂志,2007,28(2):11-12. 被引量:24
  • 5Barroso J, Ballester J, Ferrer L M, Jimenez S. Study of coal ash deposition in an entrained flow reactor: influence of coal type, blend composition and operating conditions. Fuel Processing Technology, 2006, 87: 737-752
  • 6Gabriel Nii Laryea, Soo-Young No. Development of electrostatic pressure-swirl nozzle for agricultural applications. Journal of Electrostatics, 2003, 57: 129-142
  • 7Watt J R, Brown W K. Evaporative Air Conditioning Handbook. 3rd ed. New Jersey: Fairmont Press, 1997
  • 8Merrington A C, Richardson E G. The break-up ot liquid jets. Proc. Phys. Soc. London, 1947, 59 (33): 1-13
  • 9Miesse C C. Correlation of experimental data on the disintegration of liquid jets. Ind. Eng. Chem., 1955, 47 (9): 1690-1701
  • 10Wang X F, Lefebvre A H. Mean drop sizes from pressureswirl nozzles. AIAA J. Propul. Power, 1987, 3 (1): 11 -18

共引文献34

同被引文献28

  • 1Calvert E Inkjet printing for materials and devices [J]. Chem. Mater, 2001, 13(10): 3299-3305.
  • 2Kim D, Jeong S, Park B K, et al. Direct writing of silver conductive patterns: improvement of film morphology and conductance by controlling solvent compositions [J]. AppL Phys. Lett., 2006, 89: 264101.
  • 3Jia W, Qiu H H. Experimental investigation of droplet dynamics and heat transfer in spray cooling [J]. Exp. Therm. Fluid. Sei., 2003, 27: 829-838.
  • 4Schnall-Levin M, Lauga E, Brenner M P. Self-assembly of spherical particles on an evaporating sessile droplet [J]. Langmuir, 2006, 22: 4547-4551.
  • 5Kimura M, Misner M J, Xu T, et al. Long-range ordering of diblockcopolymers induced by droplet pinning [J]. Langmuir, 2003, 19(23): 9910-9913.
  • 6Deegan R D, Bakajin O, Dupont T F, et al. Contact line deposits in an evaporating drop [J]. Phys. Rev. E, 2000, 62:756-765.
  • 7Steinchen A, Sefiane K J. Self-organised Marangoni motion at evaporating drops or in capillary menisci - thermohydrodynamical model [J]. Non-Equilib. Thermodyn., 2005, 30( 1): 39-51.
  • 8David S, Sefiane K, Tadrist L. Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops [J]. Colloids Surf, A: Physicochem. Eng. Aspects, 2007, 298(1/2): 108-114.
  • 9Durra G J, Wilson S K, Duffy B R, et al. A mathematical model for the evaporation of a thin sessile liquid droplet: comparison between experiment and theory [J]. Colloids Surf., A: Physicochem. Eng. Aspects, 2008, 323(1/2/3): 50-55.
  • 10Xu X F, Luo J B, Guo D. Criterion for reversal of thermal Marangoni flow in drying drops [J]. Langmuir, 2010, 26(3): 1918-1922.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部