期刊文献+

琼脂糖-DEAE离子交换介质的配基密度和孔径对BSA吸附的影响 被引量:14

Influences of ligand density and pore size on BSA adsorption on agarose-based DEAE-ion-exchange resins
下载PDF
导出
摘要 离子交换色谱是蛋白质分离纯化的有效方法之一,配基密度和介质孔径是影响蛋白质吸附的关键因素。采用3种不同琼脂糖浓度的凝胶为基质,具有不同的平均孔径,分别偶联上阴离子交换配基DEAE,通过调控反应条件,包括反应温度、反应时间、碱浓度和DEAE浓度,得到了不同配基密度和介质孔径的系列DEAE离子交换介质。考察了牛血清白蛋白(BSA)的静态和动态吸附性能,发现随配基密度增加或介质孔径减小,BSA饱和吸附容量有所增大;对于吸附动力学,介质孔径显著影响有效扩散系数。结果表明,配基密度和介质孔径共同决定了蛋白质的吸附性能,介质孔径主导蛋白质的孔内扩散,而配基密度则影响配基-蛋白质间的相互作用。 Ion exchange chromatography (IEC) is a common and powerful technique for the purification of proteins. The ligand density and pore size of the resins have significant effects on the separation behaviors of protein. In the present work, three kinds of crossed-linked agarose gel with different agarose concentrations were used as the matrices to represent various pore sizes, and anionic ligand, diethylaminothyl (DEAE), was coupled with different ligand densities. The preparation conditions, including the reaction temperature, time, DEAE concentration and NaOH concentration, were optimized to control the ionic exchange capacity. A series of DEAE resins with different ligand densities and pore sizes were obtained. The adsorption isotherms and kinetics of bovine serum albumin (BSA) were measured on these resins. The saturated adsorption capacity increased with the increasing of ligand densities and the decreasing of pore sizes at the range tested. For the adsorption kinetics, the pore size influenced significantly the effective pore diffusivities. The results demonstrated that both the pore size and ligand density affect the static and dynamic adsorption. The pore size dominates the diffusion and mass transfer of protein, while the ligand density affects the interactions between ligand and protein.
出处 《化工学报》 EI CAS CSCD 北大核心 2011年第11期3164-3170,共7页 CIESC Journal
基金 国家自然科学基金项目 新世纪优秀人才支持计划项目 中央高校基本科研业务费专项资金项目~~
关键词 离子交换色谱 配基密度 介质孔径 蛋白吸附 ion exchange chromatography ligand density pore size protein adsorption
  • 相关文献

参考文献15

  • 1Ali I, Aboul-Enein H Y, Singh P, Singh R, Sharma B. Separation of biological proteins by liquid chromatography [J].Saudi Pharmaceutical Journal, 2010, 18 (2):59-73.
  • 2Levison P R. Large-scale ion-exchange column chromatography of proteins: comparison of different formats [J]. Journal of ChrornatographyB, 2003, 790 (1/2): 17- 33.
  • 3陈卫东,孙彦.蛋白质离子交换的空间质量作用模型分析[J].化工学报,2002,53(1):88-91. 被引量:8
  • 4Kopaciewicz W, Regnier F E. Mobile phase selection for the high-performance ion-exchange chromatography of proteins [J].Analytical Biochemistry, 1983, 133 (1) : 251-2S9.
  • 5Franke A, Forrer N, Butte A, Cvijetic B, Morbidelli M, Johnck M, Schulte M. Role of the ligand density in cation exchange materials for the purification of proteins [ J ]. Journal of Chromatography A, 2010, 1217 (15): 2216- 2225.
  • 6Hardin A M, Harinarayan C, Malmquist G, Axen A, Van Reis R. Ion exchange chromatography of monoclonal antibodies: effect of resin ligand density on dynamic binding capacity [J]. Journal of Chromatography A, 2009, 1216 (20) : 4366-4371.
  • 7Meeue J T, Engel P, Thommes J. Effect of phenyl Sepharose ligand density on protein monomer/aggregate purification and separation using hydrophobic interaction chromatography [J]. Journal of Chromatography A, 2009, 1216 (6): 902-909.
  • 8Wrzosek K, Gramblieka M, Polakovie M. Influence of ligand density on antibody binding capacity of cation- exchange adsorbents [J]. Journal of Chromatography A, 2009, 1216 (25): 5039-5044.
  • 9Zhang L, Zhao G, Sun Y. Effects of ligand density on hydrophobic charge induction chromatography: molecular dynamics simulation[J]. Journal of Physical ChemistryB, 2010, 114 (6): 2203-2211.
  • 10王国祥,聂峰光,苏志国.琼脂糖凝胶偶联DEAE基团反应的影响因素[J].化学反应工程与工艺,2002,18(1):80-85. 被引量:9

二级参考文献20

  • 1姚志建.生物工程下游处理中的液相色谱[J].色谱,1989,7(1):15-18. 被引量:5
  • 2陈卫东 孙彦.第九届全国生物化工学术会议论文集[M].-,2000.424.
  • 3俞俊棠 唐孝宣.-[J].生物工艺学,1991,:346-346.
  • 4Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, 60: 309 -319.
  • 5Ritter H L, Drake L C. Pressure porosimeter and determination of complete maeropormsize distributions. Ind. Eng. Chem. Anal. Ed., 1945, 17:782 -786.
  • 6Kuga S. Pore size distribution analysis of gel substances by size exclusion chromatography. J. Chromatography A, 1981, 206:449- 461.
  • 7Ousalem M, Zhu X X, Hradil J. Evaluation of the porous structures of new polymer packing materials by inverse size exclusion chromatography. J. Chromatography A, 2000, 903:13-19.
  • 8Dephillips P, Lenhoff A M. Pore size distributions of cation-exchange adsorbents determined by inverse size exclusion chromatography. J. Chromatography A, 2000,883:39-54.
  • 9Yao Y, Lenhoff A M. Determination of pore size distributions of porous chromatographic adsorbents by inverse size exclusion chromatography. J. Chromatography A, 2004, 1037 (1/2): 273-282.
  • 10Grimes B A, Skudas R, Unger K K, Luhda D. Pore structural characterization of monolithic silica columns by inverse size-exclusion chromatography. J. Chromatography A, 2007, 1144:14 -29.

共引文献16

同被引文献121

引证文献14

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部