期刊文献+

复合材料薄壁圆柱壳内共振的受迫响应

Forced response of composite thin circular cylindrical shells with internal resonance
下载PDF
导出
摘要 采用多尺度法分析复合材料悬臂圆柱壳考虑内共振的受迫振动。建立考虑动态弹性模量、阻尼、几何非线性时系统的振动方程;利用Galerkin方法将时间和空间变量进行分离,然后应用多尺度法推导出内共振条件下系统的频率-振幅方程;通过算例获得了系统参数变化导致复杂非线性振动响应变化的规律。理论分析发现:由于所采用的两个轴向模态相距较近,引起了能量在两个模态之间相互传递,系统存在1:1内共振现象;相比较而言,激振力大小对系统内共振下的复杂振动响应影响比较大,而阻尼的变化对其影响则很小。 A cantilever composite thin circular cylindrical shell is investigated by using multiple scales method in this paper.Nonlinear equation of motion of the system is derived,in which the effect of dynamic Young’s modulus,damping and geometric large-amplitude are considered.The Galerkin method is used to separate the time and space variables in the equation.Applying multiple scales method,we solve the nonlinear response of the system with two neighboring axial modes being in internal resonant.The effects of different parameters on the complex dynamic response are also investigated in this study.Results show that,due to the frequencies of the two modes selected are very near a 1:1 internal resonance exists in the system;in addition,the complex vibration response of the system is affected by exciting force evidently,but it is not very sensitive to damping.
机构地区 东北大学
出处 《应用力学学报》 CAS CSCD 北大核心 2011年第5期465-469,552,共5页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(50574019) 上海宝钢集团公司联合资助项目
关键词 复合材料圆柱壳 多尺度法 非线性 内共振 动态弹性模量 composite circular cylindrical shell,multiple scales method,nonlinear,internal resonance,dynamic Young’s modulus.
  • 相关文献

参考文献12

  • 1Wouters C R. Large amplitude free vibrations of shallow spherical shell and cylindrical shell [J]. International Journal of Nonlinear Mechanics, 1985, 20(2): 69-78.
  • 2王延庆,郭星辉,常海红,巴颖.旋转薄壁圆柱壳振型进动的非线性振动特性[J].固体力学学报,2009,30(3):267-279. 被引量:5
  • 3Huang K H, Dasgupta A. A layer-wise analysis for free-vibration of thick composite cylindrical-shells[J]. Journal of Sound and Vibration, 1995. 186(2): 207-222.
  • 4Ganapathi M, Kvaradan T. Nonlinear free flexural vibrations of laminated circular cylindrical shells[J]. Composite Structures, 1995, 30(1): 33-49.
  • 5Amabili Ms Pellicano F, Paidoussis M P. Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid Part III: Truncation effect without flow and experiments[J]. Journal of Sound and Vibration, 2000, 237(4): 617-640.
  • 6白鸿柏,张培林,陈振藩.密集模态组间非线性相互作用的初步研究[J].航空学报,2000,21(5):458-461. 被引量:5
  • 7Thomas O, Touze C, Chaigne A. Non-linear vibration of free-edge thin spherical shells: modal interaction rules and 1:1:2 internal resonance[J]. International Journal of Solids and Structures, 2005, 42(11-12): 3339-3373.
  • 8Abe A, Kobayashi Y, Yamada G, Nonlinear dynamic behaviors of clamped laminated shallow shells with one-to-one internal resonance[J]. Journal of Sound and Vibration, 2007, 304: 957-968,.
  • 9沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2007:276.
  • 10李健,郭星辉,郭明涛,颜云辉.复合材料薄壁圆柱壳动态弹性模量的研究[J].东北大学学报(自然科学版),2008,29(12):1770-1773. 被引量:7

二级参考文献17

  • 1陈振藩,白鸿柏.结构的模态运动的非线性调制与平均Lagrange函数(A.L.F)[J].非线性动力学学报,1995,2(1):54-63. 被引量:2
  • 2李健,李红影,郭星辉.圆柱壳几何大变形非线性频率求解的渐近摄动法[J].振动与冲击,2007,26(3):42-44. 被引量:1
  • 3陈振藩,白鸿柏.密频内共振导致的响应饱和[J].非线性动力学学报,1996,3(1):40-50. 被引量:1
  • 4Sakaguchi R L, Wiltbank B D, Murchison C F. Prediction of composite elastic modulus and polymerization shrinkage by computational micromechanics [ J ]. Dental Materials, 2004,20 (4) : 397 - 401.
  • 5Kostopoulos V, Loutas T H, Sotiriadis G. On the Young' s modulus measurements of ceramic and carbon fibres using elastic wave propagation techniques: comparison against quasi-static tensile tests [J ]. Advanced Composites Letters, 2004,13(2) : 131 - 137.
  • 6Jinen E, Tanaka M, Maeda T, et al. Changes of dynamic modulus of polyethylene steel composites under repeated plane bending[ J ]. Chemistry of High Polymers, 1971,28 (3) : 968 - 972.
  • 7Gilbert J L, Dong D R. Numerical time-frequency transform technique for the determination of the complex modulus of composite and polymeric biomaterials from transient timebased experiments [ C ]//Proceedings of the Symposium on Biomaterials' Mechanical Properties. Pittsburgh, 1992 : 14 - 18.
  • 8Yeh G C K. Forced vibration of a two-degree-of-freedom system with combined Coulomb and viscous damping [J ]. Journal of Acoustical Society of America, 1964,39 ( 1 ) : 15 - 24.
  • 9Fox C H J, Hardie D J W. Harmonic response of rotating cylindrical shell[J]. Journal of Sound and Vibration, 1985, 101(4) :495 - 510.
  • 10Werner S. Vibrations of shells and plates[M]. New York: Marcel Dekker, 1981:135-151.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部