期刊文献+

3n-1级混洗交换网络的重排性研究 被引量:3

Study on the rearrangeability of 3n-1 stages shuffle-exchange network
下载PDF
导出
摘要 可重排性是混洗网络研究和应用的核心问题,针对当前n>4的混洗交换网络尚无实用的重排解决方案这一现实,提出了3n-1级Omega网络的重排性实现策略。该策略将无冲突路由确定问题解析为路由入线重组和路由序列分解问题,给出了通过冲突节点调整与路由无冲突扩充重组入线的方法。对于路由无冲突扩充,不仅从理论上证明了其可行性,并给出了具体的扩充算法,首次解决了n=5时Omega网络的重排性实现问题。如果关于路由序列分解的Ge猜想能以构造性方法获证,那么,策略将彻底解决3n-1级Omega网络的重排性实现问题。 Rearrangeability is an essential issue in study of SE(shuffle-exchange) network and its application.Currently,there are no practical methods to realize rearrangeability of SE networks when n4.Based on the fact,a policy to realize the rearrangeability was proposed in 3n-1 stages Omega network.In the policy,the problem of constructing no conflict routing was translated into how to rearrange routing inputs and decompose routing sequence.A method to rearrange routing inputs by adjusting conflict nodes and expanding routings without conflict was offered.The feasibility of ex-panding routings without conflict was proved,and an algorithm of expanding routings was provided.The rearrangeability of Omega network was first realized when n=5.If Ge conjecture on decomposing routing sequence is constructively proved,how to realize the rearrangeability of the 3n-1 Omega network would be perfectly solved by the policy.
出处 《通信学报》 EI CSCD 北大核心 2011年第10期10-18,共9页 Journal on Communications
基金 解放军理工大学指挥自动化学院预研基金资助项目(2009ZY07)~~
关键词 混洗交换网络 Omega网络 可重排性 入线重组 无冲突路由扩充 shuffle-exchange network Omega network rearrangeability rearranging inputs expanding routing without conflict
  • 相关文献

参考文献21

  • 1STONE H S. Parallel processing with the perfect shuffie[J].IEEE Transactions on Computers, 1971, C-20(2): 153-161.
  • 2LAWRIE D H. Access and alignment of data in an array processor[J]. IEEE Transactions on Computers, 1975, C-24(10): 1145-1155.
  • 3LANG T, STONE H S. A shuffle-exchange net- work with simplified control[J]. IEEE Transactions on Computers, 1976, C-25(1): 55-65.
  • 4LANG T. Interconnections between processors and memory modules using the shuffle-exchange network[J]. IEEE Transactions on Computers, 1976,C-25(5): 496-503.
  • 5LEE K Y. On the rearrangeablity of the 2(log2 N)-lstage permutation network[J]. IEEE Transactions on Computers, 1985, C-34(5): 412-425.
  • 6RAGHAVENDRA C S, VARMA A. Rearrangeability of the 5-stage shuffle-exchange network for N=8[A]. Proceedings of 1986 International Conference on Parallel Proceeding[C]. University Park, USA, 1987. 119-122.
  • 7KIM K, RAGHAVENDRA C S. A simple algorithm to route arbitrary permutations on 8-imput 5-stage shuffle-exchange network[A]. Proceedings of 5th International Parallel Processing Symposium[C]. Beverly Hills, USA, 1991.398-403.
  • 8戴浩,沈孝钧.在7级混洗交换网络中实现16×16的可重排性[J].电子学报,2007,35(10):1875-1885. 被引量:8
  • 9SOVIS E On rearrangeable networks of the shuffle-exchange network[A]. Proc of Frontiers of Massively Parallel Computation[C]. College Park, USA, 1990.304-314.
  • 10ABDENNADHER A, FENG T. On rearrangeability of Omega-Omega networks[A]. Proc 1992 International Conference on Parallel Proc[C]. University of Michigan, USA, 1992. 159-165.

二级参考文献25

  • 1K Kim, C S Raghavendra. A Simple Algorithm to Route Arbitrary Permutations on 8-imput 5-stage Shuffle/Exchange Network[A].Proceeding 5th International Parallel Processing Symposium[C]. May 1991. 398 - 403.
  • 2C S Raghavendra,A Varma. Rearrangeability of the 5 Stage Shuffle/Exchange Network for N = 8[A]. Proceedings of 1986 International Conference on Parallel Proceeding[C]. 1987.119- 122.
  • 3H S Stone. Parallel Processing with the Perfect shuffle [J]. IEEE Transactions on Computers, 1971. C-20(2) : 153 - 161.
  • 4D H Lawrire. Access and alignment of data in an array processor[J]. IEEE Transactions on Computers,December 1975, C-24 (12):1145 - 1155.
  • 5C S Raghavendra. On the Rearrangeability Conjecture of (21og2N-1)-stage Shuffle/Exchange Network [A]. IEEE computer Society Technical Committee on Computer Architecture Newsletter[C]. Winter 1994-95.10-12.
  • 6C Wu, T Feng. On a Class of Multistage Interconnection Networks[J]. IEEE Transactions on Computers, 1980,29(8) :694 - 702.
  • 7C Wu, T Feng. The universality of the shuffle/exchange network [J].IEEE Transactions on Computers,1981,30(5) :324- 332.
  • 8V E Benes.Proving the rearrangeability of connecting networks by group calculations[J].Bell system Tech Jour 1975,54:421-434.
  • 9D S Parker. Notes on shuffle/exchange-type switching networks [J]. IEEE Transactions on Computers,Mar. 1980,c-29:213-222.
  • 10N Linial, M Tarsi. Efficient generation of permutations with the shuffle/exchange network[R]. Technical Report, UCLA computer science dept. 1982.

共引文献7

同被引文献6

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部