期刊文献+

基于二元传感器网络的多源定位研究 被引量:1

Multi-source localization with binary sensor networks
下载PDF
导出
摘要 针对多源定位模型计算比较复杂的情况,基于Neyman-Pearson准则对二元传感器网络的多源探测模型进行了研究,然后在2个信号源的情况下,提出利用Fisher准则将传感器分为两部分,每部分传感器与相应信号源对应,并在此基础上提出利用加权减负加正(WSNAP,weighted subtract on negative add on positive)算法对多信号源进行定位计算。仿真结果表明:Fisher准则能以较高的正确率的将报警传感器分为两部分;与质心算法和加正(AP,add positive)算法相比较,所提出的方法计算复杂度较低、定位精度更高,并利用数据库对文中的结论进行了验证。 A new multi-source detection model was proposed based on Neyman-Pearson criterion to reduce the computa-tional complexity caused in the multi-source localization.The Fisher criterion was employed to divide sensors into two parts,where two sources were present and each part corresponds to one of the sources.The WSNAP(weighted subtract on negative add on positive) multi-source location algorithm was applied to localize the multiple sources.The simulation results show that Fisher criterion is able to divide the alarmed sensor into two parts with relatively higher accuracy.The proposed WSNAP has better estimation accuracy than AP(add positive) algorithm and CE(centroid estimator) algorithm under the circumstance of lower computation complexity.Finally,the results are verified using the database of distributed wireless sensor networks.
出处 《通信学报》 EI CSCD 北大核心 2011年第10期158-165,共8页 Journal on Communications
基金 国家自然科学基金资助项目(60874103) 机器人学国家重点实验室开放课题基金资助项目(RLO200913)~~
关键词 无线传感器网络 多目标定位 二元传感器 NEYMAN-PEARSON准则 FISHER准则 wireless sensor networks multi-source localization binary sensor Neyman-Pearson criterion Fisher criterion
  • 相关文献

参考文献17

  • 1李建中,高宏.无线传感器网络的研究进展[J].计算机研究与发展,2008,45(1):1-15. 被引量:441
  • 2APPADWEDULA S, VEERAVALLI V V, JONES D L. Energy- efficient detection in sensor networks[J]. IEEE Transactions on Selected Areas in Communications, 2005, 23(4): 693-702.
  • 3WANG Y, WANG X D, XIE B, et al. Intrusion detection in homogeneous and heterogeneous wireless sensor networks[J]. IEEE Transactions on Mobile Computing, 2008, 7(6): 698-711.
  • 4BAHREPOUR M, MERATNIA N, HAVINGA P J M. Sensor fusion-based event detection in wireless sensor networks[A], The 6th Annual International MobiQuitous[C]. Toronto, Canada,2009.
  • 5SHENG X H, HU Y H. Energy based acoustic source localization[A]. The 2nd International Workshop on Information Processing in Sensor Networks[C]. Palo Alto, California, USA, 2003.285-300.
  • 6MARCO D, HU Y H. Vehicle classification in distributed sensor networks[J]. Journal of Parallel and Distributed Computing, 2004, 64(7): 826-838.
  • 7VIJAYAKUMARAN S, LEVINBOO Y, WONG T F. Maximum like- lihood localization of a diffusive point source using binary observations[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 665-676.
  • 8M1CHAELIDES M P, PANAYIOTOU C G SNAP: fault tolerant event location estimation in sensor networks using binary data[J]. IEEE Transaction on Computers, 2009, 58(9): 1185-1197.
  • 9LIU X Q, ZHAO G, MAX L. Target localization and tracking in noisy binary sensor networks with known spatial topology[A]. IEEE International Conference on Acoustics, Speech and Signal Processing[C]. Hawaii, USA, 2007. 15-20.
  • 10WANG Z J, BULUT E, SZYMANSKI B K. Distributed target tracking with imperfect binary sensor networks[A]. IEEE Global Telecommunications Conference[C]. New Orleans, LA, USA, 2008. 1-5.

二级参考文献162

共引文献440

同被引文献14

  • 1ATAPATTU S,TELLAMBURA C,JIANG H. Energy detection based cooperative spectrum sensing in cognitive radio networks [ J ]. IEEE Trans. Wireless Communications,2011, 10 ( 4 ) : 1232-1241.
  • 2CHEN C, CHENG H, YAO Y D. Cooperative spectrum sensing in cognitive radio networks in the p~senee of the primary user emula- tion attack [ J]. IEEE Trans. Wireless Communications, 2011, 10(7) :2135-2141.
  • 3CHEN Z, COOKLEV T, CHEN C, el al. Modeling primary user emu- lation attacks and defenses in cognitive radio networks[ C ]//Proc. Performance Computing and Communications Conference (IPCCC). [ S. 1. ] :IEEE Press,2009:208-215.
  • 4LI H,HAN Z. Dogfight in spectrum:combating primary user emula- tion attacks in cognitive radio systems,part i: known channel statis- tics[ J ]. IEEE Trans. Wireless Communication 2010, 9 (11): 3566-3577.
  • 5YUAN Z, NIYATO D, LI H,et al. Defense against primary user emu- lation attacks using belief propagatinn of location information in cog- nitive radio networks[ C ]//Proc. Wireless Communications and Net- working Conference( WCNC ). [ S. 1. ] :IEEE Press,2011:599-604.
  • 6LI L,ZHOU X, XU H,et al. Simplified relay selection and power al- location in cooperative cognitive radio systems [ J ]. IEEE Trans. Wireless Communications ,2011,10 ( 1 ) :33-36.
  • 7HAGHIGHAT M,SADOUGH S M. Cooperative spectrum sensing in cognitive radio networks under primary user emulation attacks [ C ]//Proc. 2012 Sixth International Symposium on Telecommuni- cations(IST). [ S. 1. ] :IEEE Press,2012 : 148-151.
  • 8YUAN Z, NIYATO D, LI H, et al. Defeating primary user emulation attacks using belief propagation in cognitive radio networks [ J ]. IEEE Journal on Selected Areas in Communications, 2012, 30 (10) : 1850-1860.
  • 9NGUYEN N T,ZHENG R, HAN Z. On identifying primary user em- ulation attacks in cognitive radio systems using nonparametric bayesian classification[ J ]. IEEE Trans. Signal Processing,2012,60 (3) : 1432-1445.
  • 10YOU C, KWON H, HEO J. Cooperative TV spectrum sensing in cognitive radio for WiFi networks[ J ]. 1EEE Trans. Consumer Eiee- tronics,2011,57( 1 ) :62-67.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部