期刊文献+

基于自适应分块外观模型的视觉跟踪 被引量:3

Fragment-based visual tracking with adaptive appearance model
下载PDF
导出
摘要 提出将目标和遮挡物视为关联对象,利用遮挡物的特征来更新模板,引入高斯混合模型(GMM)进行自适应的模板学习。模板中的每个像素利用包含3个分量的GMM来表示。在当前帧中,一旦获得模板匹配,模板中每个像素及其对应的GMM都会进行相应的更新。实现结果表明,对于部分遮挡和外观变化,算法能够实现顽健的跟踪。 A joint object was proposed which combine the target and the occluder in order to exploit the characteristics of the occluder to evolve the target template.To this end,the Gaussians mixture model(GMM) was introduced to enable an adaptive learning mechanism.Each pixel of the template is modeled using a GMM with three components.Once the template-matching is achieved in the current frame,the pixel value is used to update a specific component in its GMM.After that,the pixel will also be updated.Experimental results show that the proposed method is robust with respect to the partial occlusions and natural appearance changes.
出处 《通信学报》 EI CSCD 北大核心 2011年第10期166-173,共8页 Journal on Communications
基金 国家自然科学基金资助项目(60903172 60972016) 国家高技术研究发展计划("863"计划)基金资助项目(2009AA01Z205) 中央高校基本科研业务费专项基金资助项目(2010MS092) 湖北省自然科学基金资助项目(2008CDB329)~~
关键词 部分遮挡 高斯混合模型 基于块的模板 partial occlusions GMM fragment-based template
  • 相关文献

参考文献22

  • 1YILMAZ A, JAVED O, SHAH M. Object tracking: a survey[J]. ACM Journal of Computing Surveys, 2006, 38(4): 13.
  • 2MCKENNA S, R,-A Y, GONG S. Tracking color objects using adaptive mixture models[J]. Image and Vision Computing, 1999,17:225-231.
  • 3BIRCHFIELD S. Elliptical head tracking using intensity gradients and color histograms[A]. Proc IEEE Conf on Computer Vision and Pattern Recognition[C]. Santa Barbara, California, 1998. 232-237.
  • 4KALE A, JAYNES C. A joint illumination and shape model for visual tracking[A]. Proc IEEE Conf on Computer Vision and Pattern Recognition[C]. New York City, NY, 2006.602-609.
  • 5ZHOU H, YUAN Y, SHI C. Object tracking using SIFT features and mean shift[J]. Computer Vision and Image Understanding, 2009, 113(3): 345-352.
  • 6HE W, YAMASHITA T, LU H, et al. SURF tracking[A]. International Conference on Computer Vision[C]. Kyoto, Japan, 2009.
  • 7MEYER E BOUTHEMY E Region-based tracking in an image sequence[A]. European Conf on Computer Vision[C]. Santa Margherita Ligure, Italy, 1992. 476-484.
  • 8ISARD M, BLAKE A. Condensation: conditional density propagation for visual tracking[J]. Int Journal of Computer Vision (IJCV), 1998, 29(1):5-28.
  • 9COMANICIU D, RAMESH V, MEER P. Real-time tracking of non-rigid objects using mean shift[A]. Proc IEEE Conf. on Computer Vision and Pattern Recognition[C]. Hilton Head, South Carolina, United States, 2000. 142-149.
  • 10ADAM A, RIVLIN E, SHIMSHONI I. Robust fragments-based tracking using the integral histogram[A]. Proc IEEE Conf on Computer Vision and Pattern Recognition[C]. New York City, NY, 2006. 98-805.

同被引文献34

  • 1彭宁嵩,杨杰,周大可,刘志.Mean-Shift跟踪算法中目标模型的自适应更新[J].数据采集与处理,2005,20(2):125-129. 被引量:23
  • 2田雁,曹剑中,张伯珩,许朝晖,刘晓明,刘莹.一种快速捕获目标的电视跟踪系统设计[J].光子学报,2007,36(B06):266-269. 被引量:8
  • 3Prakash C, Paluri B, Pradeep N. Fragments based parametric tracking [C]//Asian Conference on Computer Vision, Tokyo, Japan, 2007: 522-531.
  • 4PENG Ning-song, YANG Jie, LIU Zhi. Mean shift blob tracking with kemael histogram filtering and hypothesis testing [J]. Pattern ReeognitionLetters(S0167-8655), 2005, 26(5): 605-614.
  • 5Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-Rigid Objects using Mean Shift [C]// Computer Vision and Pattern Recognition, Hilton HeadIsland, SC, 2000, 2: 142-149.
  • 6QIAN Hui-min, MAO Yao-bin, Jason Geng. Object tracking with seld-updating tracking window [C]//PAIS'07 Proceedings of the 2007 Pacific Asia conference on Intelligence and security informaties, Springer-Verlag Berlin, Heidelberg, 2007: 82-89.
  • 7Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram [ C ]//Proceedings of the IEEE Com- puter Society Conference on Computer Vision and Pattern Recog- nition. New York, USA: IEEE, 2006: 798-805.
  • 8Wang J Q, Yagi Y. Integrating color and shape-texture features for adaptive real-time object tracking [ J ]. IEEE Transactions on Image Processing, 2008, 17(2) : 235-240.
  • 9Canny J. A computational approach to edge detection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,8(6) :679-698.
  • 10Wang Z W, Yang X K, Xu Y, et al. Camshift guided particle fil- ter for Visual tracking [ J ] . Pattern Recognition Letters, 2009, 30 (4) :407-413. [ DOI : 10. 1016/j. patrec. 2008. 10.017. ].

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部