期刊文献+

3种方法纯化兔抗H9N2亚型禽流感病毒血清的比较 被引量:2

Comparison of Purification of Rabbit Anti-H9N2 Subtype Avian Influenza Virus Serum by Three Methods
下载PDF
导出
摘要 本试验分别用蛋白G亲和层析法、饱和硫酸铵法和辛酸-硫酸铵法纯化兔抗H9N2亚型禽流感病毒血清,发现蛋白G亲和层析法纯化得到的抗体纯度最高,回收率较低,抗体活性未变,操作简便,但成本较高,适合实验室研究及小量样品的纯化;饱和硫酸铵法纯化得到的抗体纯度较蛋白G亲和层析法低一些,抗体活性不变,可通过多次盐析来提高抗体纯度,多作为蛋白G亲和层析法纯化前的初步纯化;辛酸-硫酸铵法纯化得到的抗体纯度不及前两种方法,回收率较高,抗体活性亦无改变,纯化时对pH的精确性和辛酸的浓度要求较高,多用于样品的粗提和单抗的纯化。 Rabbit anti-H9N2 subtype avian influenza virus(AIV) serum was purified by protein G affinity chromatograph,caprylic acid-ammonium sulfate precipitation and saturated ammonium sulfate precipitation separately.It was found that the antibodies obtained from the first method was of the highest purity,unchanged activity,relatively low recovery rate,easy operation and high cost,which indicated that the first method was suitable for laboratory studies and purification in small sample volume.Antibodies obtained with the second method were of lower purity than that from the first method and of unchanged activity.Repeated salting out could improve the purity.It was suitable for preliminary purification before protein G affinity chromatograph.The third method was often used in crude extraction in large volume samples or the purification of ascitic fluid.With this method,purity of the antibodies obtained was lower than that from the other two methods,recovery rate was high and activity of antibodies unchanged.The purification demanded for relatively high accuracy of pH value and caprylic acid concentration.
出处 《中国畜牧兽医》 CAS 北大核心 2011年第10期211-213,共3页 China Animal Husbandry & Veterinary Medicine
基金 国家肉鸡技术体系产业项目(nycytx-42-G3-03) 广东省科技计划项目(2008A030203005)
关键词 纯化方法 H9N2亚型禽流感病毒 血清 purification methods H9N2 subtype AIV serum
  • 相关文献

参考文献9

  • 1纪炜,刘媛,刘贤进.微囊藻毒素多克隆抗体的纯化及F(ab′)_2片段的制备[J].江苏农业学报,2010,26(3):641-644. 被引量:2
  • 2张云现,潘玲,李玉,张静,余为一.兔抗鸡传染性法氏囊病抗体的制备和纯化[J].中国畜牧兽医,2008,35(8):85-87. 被引量:3
  • 3杨蓉,谢忠平,龙润乡,白惠珠,谭振国,王燕,吴忠香,张勇.Protein A/G亲和层析在HCV抗体纯化中的应用效果[J].医学研究杂志,2010,39(1):24-26. 被引量:5
  • 4陈丹,孙广瑞,柳增善.辛酸-硫酸铵联合沉淀法在单克隆抗体纯化中的应用[J].安徽农业科学,2007,35(26):8105-8105. 被引量:25
  • 5Ali E,Paul N N, Raed O, Abu O. The state of antibody therapy [J].Human Immunology,2010,71:1243-1250.
  • 6Amith D N, Stefano M, Patrick V G, et al. Performance of hex- amer peptide ligands for affinity purification of immunoglobulin G from commercial cell culture media[J]. J Chromatogr A, 2010,11:71-80.
  • 7Anwar M H, Gary Van D, Li C G, et al. Universal antibodier a- gainst the highly conserved influenza fusion peptide cross neu- tralize several subtypes if influenza A virus[J]. Biochemical and Biophysical Research Communications,2010,403:247-251.
  • 8John G L,Bernd H A, Rehmb Z Z. Polyester beads:An efficient and simple method for purifying IgG from mouse hybridoma su pernatants [ J ]. Journal of Immunologieal Methods, 2009, 346 : 71-74.
  • 9Roberto B, Filippo C, Nicasio M, et al. Monoclonal antibodies iso- lated from human B ceils neutralize a broad range of H1 subtype influenza A viruses including swine-origin influenza virus (S- OIV) [J]. Virology,2010,399 : 144-152.

二级参考文献22

共引文献31

同被引文献16

  • 1PetersenC,Gut J , Doyle PS, et al. Characterization of a〉900,000-Mr Cryptosporidium parvum sporozoite glycoprotein recog-nized by protective hyperimmune bovine colostral immunoglobu-lin[J], Infect Immun, 1992,60 (12) : 5132-5138.
  • 2PriestJW,Kwon JP,Moss DM, et al. Detection by enzyme im-munoassay of serum immunoglobulin G antibodies that recognizespecific Cryptosporidium parvum antigens[J]. J Clin Microbiol,1999,37(5): 1385-1392.
  • 3PerrierV, Solassol J,Crozet C,et al. Anti-PrP antibodies blockPrPSc replication in prion-infected cell cultures by acceleratingPrPc degradation [J]. J Neurochem, 2004, 89 (2): 454-463.DOI: 10. 1111/j. 1471-4159. 2004. 02356. x.
  • 4ApostolopoulosV,Yu M, Corper AL, et al. Crystal structureof a non-canonical low-affinity peptide complexed with MHCclass I: a new approach for vaccine design[j]. J Mol Biol, 2002,318(5): 1293-1305. DOI: 10. 1016/S0022-2836(02)00196-1.
  • 5Naik RR, Brott LL,Clarson SJ, et al. Silica-precipitating pep-tides isolated from a combinatorial phage display peptide library[J]. J Nanosci Nanotechnol* 2002, 2(1) : 95-100.
  • 6Mullen LM, Nair SP, Ward JM, et al. Phage display in thestudy of infectious diseases[J]. Trends Microbiol, 2006,14(3):141-147. DOI: 10. 1016/j. tim. 2006. 01.006.
  • 7LauterbachSB,Lanzillotti R, Coetzer TL. Construction and useof Plasmodium falciparum phage display libraries to identifyhost parasite interactions[J]. Malar J,2003,2 ; 47. DOI: 10.1186/1475-2875-2-47.
  • 8LanzillottiR,Coetzer TL. Phage display: a useful tool for ma-laria research[J]. Trends Parasitol,2008,24(1) : 18-23.
  • 9GnanasekarM, Rao KV,He YX, et al. Novel phage display-based subtractive screening to identify vaccine candidates ofBrugia Infect Immun, 2004, 72(8): 4707-4715.DOI: 10. 1128/IAI. 72. 8. 4707-4715. 2004.
  • 10EllisSE, Newlands GF, Nisbet AJ , et al. Phage-display librarybiopanning as a novel approach to identifying nematode vaccineantigens[j]. Parasite Immunol, 2012,34(5): 285-295. DOI:10. 1111/j. 1365-3024. 2011. 01317. x.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部