期刊文献+

基于改进BP神经网络砾石土-滤层渗透破坏判别研究 被引量:1

Study of Improved BP(Error Back-Propagation)-based Neutral Network Gravel Soil—Filter Seepage Failure Discrimination
下载PDF
导出
摘要 针对BP人工神经网络具有易陷入局部极小、学习过程中常常发生振荡等缺陷,提出了在BP算法中引入动量因子,并采用自适应调整学习率的梯度下降算法,建立了砾石土渗透破坏判别的改进BP神经网络模型。根据砾石土渗透破坏的实测资料,分别对BP神经网络判别结果和改进的BP神经网络判别结果进行比较,结果表明后者比前者判别能力更佳。 In consideration of that BP artificial neutral network is apt to cause local minimization instead of whole minimization and to lower learning rate, etc., the paper has established the improved BP neutral network model for discrimination of gravel seepage failure by introducing momenturm factors into the BP algorithm and adopting the gradient method of self-adaptive regulating learning rate. A comparison of the results obtained using the BP neutral network and the improved BP neutral network, according to the measurement of gravel soil seepage failure, indicates that the latter is of higher capability of discrimination than the former.
作者 卢建移 段波
出处 《云南水力发电》 2011年第5期4-6,22,共4页 Yunnan Water Power
关键词 BP神经网络 动量因子 自适应学习率 渗透破坏 BP neutral network momentum factor self- adaptive learning rate seepage failure
  • 相关文献

参考文献6

  • 1韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2001.123-125.
  • 2Holland J H. Adaptation in Natural and Artificial Systems[M]. Ann Arbor,MI: Univemity of Michigan Press, 1975.
  • 3Goldberg D E. Henetic Mgoritham in Search, Optimization and Ma - chine Learning[ M] .New York:Addison - Wesley, 1989.
  • 4罗先启,詹振彪,葛修润,曹玲.BP网络与遗传算法在水布垭工程中的应用[J].岩石力学与工程学报,2002,21(7):963-967. 被引量:15
  • 5Charles L K,lgor Y,Keith N. Solving verse initial - value boundary- value problems via genetic algorithm[J]. Engineering Application of Artificial Intelligence, 2000,13(6) :625 - 633.
  • 6陈方泽,陈丙珍,何小荣.遗传算法与神经网络(Ⅰ)──用改进的遗传算法训练神经网络[J].化工学报,1996,47(3):280-286. 被引量:22

二级参考文献10

共引文献57

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部