期刊文献+

菊花CgF3′H基因克隆及表达特性分析 被引量:3

Cloning and Expression Profiles of CgF3'H in Chrysanthemum
下载PDF
导出
摘要 根据菊花花器官表达序列标签序列设计引物,采用PCR和5'-RACE技术对类黄酮3'-羟化酶(F3'H)基因进行全长cDNA克隆。克隆获得F3'HcDNA全长为1760bp,其开放阅读框(ORF)为1524bp,编码一条包含508个氨基酸残基的多肽,GenBank登录号为AB523844。预测该基因编码的蛋白分子式为C2535H4022N684O707S18,分子量为55.97kD,理论等电点pI为7.23。其氨基酸序列与蓝眼菊属(ABB29899.1)、紫茎泽兰(ABM46853.1)、欧亚种葡萄(ACN38268.1)和高粱(ABG54320.1)等植物的F3'H氨基酸序列的同源性分别为83.27%、80.51%、75.05%和59.96%。系统进化分析表明其与蓝眼菊属的亲缘关系最近。荧光定量PCR分析发现F3'H基因在切花菊‘H5’各个器官中均有表达,花托中表达量最高,而叶片中表达量最低。 Primers was designed according to the available expressed sequence tags of F3'H, RT-PCR and 5'-RACE PCR cloning were employed to clone the full length of F3'H. The full length cDNA is 1 760 bp, with an open reading frame (ORF) of 1 524 bp in length. The GenBank accession number of CgF3'H is AB523844. The predicted molecular weight is 55.97 kD, with a theoretical pI of 7.23, and the molecular formula is C2535H4022N684O707S18. The identity between amino acid sequence of CgF3'H and those from Osteospermum (ABB29899.1), Ageratina adenophora (ABM46853.1), Vitis vinifera (ACN38268.1) and Sorghum bicolor (ABG54320.1) are 83.27%, 80.51%, 75.05% and 59.96%, respectively. Phylogeny analysis revealed that CgF3'H is closest to that from Osteospermum. Real-time quantitative PCR analysis showed the CgF3'H gene expressed in all organs of cut chrysanthemum cultivar ‘H5’, the expression level of CgF3'H is highest in receptacles but least in leaves.
出处 《分子植物育种》 CAS CSCD 2011年第5期623-628,共6页 Molecular Plant Breeding
基金 国家自然科学基金(30872064) 中国博士后基金(20070411058) 教育部新世纪优秀人才支持计划(NCET-10-0492) 南京农业大学青年科技创新基金(KJ07009 KYZ201112) 农业部公益性行业专项(200903020) 国家高技术研究发展计划(2011AA100208) 江苏省青蓝工程优秀青年骨干教师基金(2008[30])共同资助
关键词 菊花 类黄酮3'-羟化酶(F3'H) 克隆 表达 Chrysanthemum Flavonoid 3'-hydroxylase (F3'H) Cloning Expression
  • 相关文献

参考文献23

  • 1Brugliera F., Barri-Rewell G., Hoton T.A., and Mason J.G., 1999, Isolation and characterization of a flavonoid 3'-hydroxylase eDNA clone corresponding to the Ht1 locus of Petunia hybrid, Plant Journal, 19(4): 441-451.
  • 2Castellarin S.D., Di Gaspero G., Marconi R., Nonis A., Peterlunger E., Paillard S., Adam-Blondon A.F., and Testolin R., 2006, Colour variation in red grapevines (Vitis vinifera L.): Genomic organization, expression of flavonoid 3'-hydroxylase, flavo- noid 3',5'-hydroxylase genes and related metabolite profiling of red cyaniding-/blue delphinidin-based anthocyanins in berry skin, BMC Genomics, 7:12.
  • 3Chen S.M., Miao H.B., Chen F.D., Jiang B.B., Lu J.G., and Fang W.M., 2009, Analysis of expressed sequence tags (ESTs) collected from the inflorescence of chrysanthemum, Plant Molecular Biology Reporter, 27(4): 503-510.
  • 4Chomezynski P., and Sacchi N., 1987, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol- chloroform extraction, Analytical Biochemistry, 162 (1): 156-159.
  • 5Dixon R.A., and Steele C.L., 1999, Flavonoids and isoflavonoids-a gold mine for metabolic engineering, Trends in Plant Science, 4(10): 394-400.
  • 6Garcia-Martinez J.L., Lopez-Diaz I., Sanchez-Beltran M.J., Phillips A.L., Ward D.A., Gaskin P., and Hedden P., 1997, Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development, Plant Molecular Biology, 33(6): 1073-1084.
  • 7Graham S.E., and Peterson J.A., 1999, How similar are P450s and what can their differences teach us? Archives of Biochemistry and Biophysics, 369(1): 24-29.
  • 8Grayer R.J., and Harbome J.B., 1994, A survey of antifungal compounds from higher plants, 1982-1993, Phytochemistry, 37(1): 19-42.
  • 9Jeong S.T., Goto-Yamamoto N., Hashizume K., and Esaka M., 2006, Expression of the flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes and flavonoid composition in grape (Vitis vinifera), Plant Science, 170(1): 61-69.
  • 10Kraus P.F., and Kutchan T.M., 1995, Molecular cloning and heterologous expression of a eDNA encoding berbamuninc synthase a C-O phenol-coupling cytoehrome P450 from the higher plant Berberis stolonifera, Proceeding of The National Academy of Sciences of United States of America., 92(6): 2071-2075.

二级参考文献30

  • 1傅荣昭,马江生,曹光诚,李文彬,孙勇如.观赏植物色香形墓因工程研究进展──文献综述[J].园艺学报,1995,22(4):381-381. 被引量:63
  • 2Buchanan BB, Gruissem W, Jones RL (2004).植物生物化学与分子生物学.瞿礼嘉,顾红雅,白书农,赵进东,陈章良主译.北京:科学出版社.1057-1082.
  • 3Castellarin SD, Matthews MA, Gaspero GD, Gambetta GA (2007). Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227:101-112.
  • 4Chapple C (1998). Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol, 49:311-343.
  • 5Jeong ST, Goto-Yamamoto N, Hashizume K, Esaka M (2006). Expression of the flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes and flavonoid composition in grape (Vitis vinifera). Plant Sci, 170:61-69.
  • 6Kraus PF, Kutchan TM (1995). Molecular cloning and heterologous expression of a cDNA encoding berbamuninc synthase a C-O phenol-coupling cytochrome P450 from the higher plant Berberis stolonifera. Proc Natl Acad Sci USA, 92: 2071-2075.
  • 7Li B, Wang B, Tang K, Liang Y, Wang J, Wei J (2006). A simple and convenient approach for isolating RNA from highly viscous plant tissue rich in polysaccharides. Colloids Surf B Biointef, 49:101-105.
  • 8Murakami K, Mihara K, Omura T (1994). The transmembrane region of microsomal cytochrome P450 identified as the endoplasmic reticulum retention signal. J Biochem, 116: 164-175.
  • 9Yamazaki S, Sato K, Suhara K, Sakaguchi M, Mihara K, Omura T (1993). Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. J Biochem, 114: 652-657.
  • 10包满珠.植物花青素基因的克隆及应用——文献综述[J].园艺学报,1997,24(3):279-284. 被引量:70

共引文献79

同被引文献24

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部