期刊文献+

基于独立成分分析的冷轧带钢表面缺陷识别 被引量:5

Recognition Based on Independent Component Analysis for Surface Defects of Cold Strips
原文传递
导出
摘要 为了提高冷轧带钢表面缺陷识别率,提出基于独立成分分析(ICA)的缺陷图像特征提取方法。通过ICA建立缺陷图像的统计生成模型,从缺陷库中自适应地估计ICA基向量,将缺陷图像向基向量张成的空间投影,从而将图像变换到ICA域,图像在ICA域内的表示即为相应的特征向量。这种特征元素之间统计独立,是图像的稀疏编码。试验表明,本方法提取的特征优于常用的几何、纹理、不变矩特征,缺陷识别率较现有方法得到了提高。 In order to improve the recognition rate of cold rolled strip surface defects, a new method of feature extraction was investigated for defect images based on Independent Component Analysis (ICA). Base vectors were estimated adaptively from the defect library using the statistics generation model established by ICA. Defect image were transformed to ICA domain through projecting to the space spanned by base vectors. The coefficients in ICA domain were defect's feature vector, which were statistically independent and become image's sparse coding. Experiments show that the proposed feature is superior to geometry, texture and invariant moment features, and it produces higher recognition rate of defect images.
出处 《钢铁研究学报》 CAS CSCD 北大核心 2011年第10期63-66,共4页 Journal of Iron and Steel Research
基金 湖北省自然科学基金资助项目(2009CDA146)
关键词 带钢表面缺陷 独立成分分析 稀疏编码 特征提取 缺陷识别 strip surface defects independent component analysis (ICA) sparse coding feature extraction defect recognition
  • 相关文献

参考文献10

  • 1Mcmanus G J. Automatic Surface Inspection of Steel Sheet [J]. Iron and Steel Engineer, 1996,73(3) :56.
  • 2李骏,颜云辉,王成明,魏天宇.板带材缺陷检测中的多特征优化组合方法研究[J].计算机工程与应用,2007,43(22):197-200. 被引量:2
  • 3孔月萍,王亚安,王快社.基于不变矩的带钢数字图像的缺陷检测算法[J].无损检测,2010,32(1):6-8. 被引量:6
  • 4Khotanzad A, Hong Y H. Invariant Image Recognition by Zernike Moments [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12(5) : 489.
  • 5Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis [M]. Helsinki: John Wiley & Sons,2001.
  • 6Hyvarinen A. Fast and Robust Fixed Point Algorithms for Independent Component Analysis [J]. IEEE Transactions on Neural Networks,1999,10(3) :626.
  • 7Hyvarinen A, Oja E. Image Feature Extraction by Sparse Co ding and Independent Component Analysis [C]//Proceeding of International Conference on Pattern Recognition (ICPR1998). Brisbane, Australia: Is. n. ], 1998 : 1268.
  • 8Donoho D L. Nature vs. Math: Interpreting Independent Component Analysis in Light of Recent Work in Harmonic Analysis [C]//Proceeding of International Workshop on In dependent Component Analysis and Blind Signal Separation (ICA2000). Helsinki, Finland:[s. n. ],2000:459.
  • 9Mitianoudis N, Stathaki T. PixebBased and Region Based Image Fusion Schemes Using ICA Bases [J].Information Fusion, 2007 (8) : 131.
  • 10郭金玉,苑玮琦.基于独立成分分析的掌纹识别[J].光电工程,2008,35(3):136-139. 被引量:18

二级参考文献21

共引文献23

同被引文献50

  • 1吴贵芳,徐科,徐金梧.基于LVQ神经网络的冷轧带钢表面缺陷分类方法[J].北京科技大学学报,2005,27(6):732-735. 被引量:8
  • 2王成明,颜云辉,李骏,焦志刚.一种新的冷轧带钢典型表面缺陷特征提取方法[J].计算机工程与应用,2006,42(27):184-186. 被引量:2
  • 3Treiber F. On-line automatic defect detection and surface rough- ness measurement of steel strip [J]. Iron and Steel Engineer, 1989,66(9) :26.
  • 4Badger J C, Enright S T. Automated surface inspection system [J]. Iron and Steel Engineer,1996,73(3):48.
  • 5Rodrick T J. Software controlled on-line surface inspection [J]. Steel Times Int,1998,22(3):30.
  • 6Martins L A O, Pddua F L C, Almeida P E M. Automatic de- tection of surface defects on rolled steel using computer vision and artificial neural networks [C]//36th Annual Conference on IEEE Industrial Electronics Society. Chicago, USA: IEEE, 2010,1081.
  • 7Sun Y J. Iterative relief for feature weighting: algorithms, the- ories and applications[J]. IEEE Transactions on Pattern Anal- ysis and Machine Intelligence,2007,29(6):1035.
  • 8MU H, QI D. Pattern recognition of wood defects types based on Hu invariant moments [C] // Proceedings of International Congress on Image and Signal Processing. Chicago, USA: IEEE, 2009 : 1.
  • 9Zhang Y, Wu L, Dong B P Z. A two-level iterative recon- struction method for compressed sensing MRI [J]. Journal of Electromagnetic Waves and Applications,2012,25(8) :1081.
  • 10Kong D, Ding C, Huang H. Rohust nonnegative matrix fac- torrization using L2 1-norm [C] //CIKM'11: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. New York: ACM,2011:673.

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部