期刊文献+

基于差分进化的细菌觅食群游算法 被引量:4

Bacterial foraging group-tours algorithm based on differential evolution
下载PDF
导出
摘要 针对细菌觅食算法在优化过程中步长一致、速度较慢的缺陷,赋予细菌对环境感知的能力,并利用灵敏度的概念来调节群游步长,提高收敛速度;将差分进化的思想引入趋化算子,对趋化过程中的细菌位置进行修正,改善群游过程中部分维的退化现象,增加收敛的精度。采用高维典型测试函数对算法进行测试,新算法明显提高了搜索速度和精度,改造后适用于多维、约束等实际工程问题的优化。 In view of the defects of the same swim step and slow velocity in the bacterial foraging algorithm,this paper gave bacteria the ability of context-aware,and increased the convergence speed using the sensitivity to adjust the group swim step.introduced the ideas of differential evolution to the process of chemotaxis to optimize the bacterial position in the process of amendment,and improved the degradation dimension in the process of group tour and increased the accuracy of convergence.It tested the algorithm by the high-dimensional and multimodal function.New algorithm significantly improved the search speed and accuracy,and it is suitable for practical engineering problems of multi-dimensional,constrained optimization.
出处 《计算机应用研究》 CSCD 北大核心 2011年第11期4028-4031,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(71071057)
关键词 灵敏度 差分进化 细菌觅食 全局优化算法 sensitivity differential evolution bacterial foraging global optimization
  • 相关文献

参考文献15

  • 1MUILLER S, AIRAGHI S, MARCHELO J, et al. Optimization algorithms based on a model of bacterial chemotaxis [ C ]//Proc of the 6th International Conference on Simulation of Adaptive Behavior. [ S. l. ] : MIT Press,2000:375- 384.
  • 2PASSINO K M. Biomimicry of bacterial foraging for distributed optimization and control[ J]. I EEE Control Systems Magazine,2002, 22(3) :52-67.
  • 3LIU Yang, PASSINO K M, POLYCARPOU M M. Stability analysis of m-dimensional asynchronous swarms with a fixed communication topology[ J]. IEEE Trans on Automatic Control,2003,48( 1 ):76- 95.
  • 4MISHRA S. A hybrid least square-fuzzy bacteria foraging strategy for harmonic estimation [ J ]. IEEE Trans of Evolutionary Computation,2005,9( 1 ) :61-73.
  • 5DATTA T, MISRA I S, MANGARAJ B B, et al. Improved adaptive bacteria foraging algorithm in optimization of antenna array for faster convergence [ C ]//Progress in Electromagnetics Research. 2008 : 143- 157.
  • 6MAJHI R, PANDA G, MAJHI B, et al. Efficient prediction of stock market indices using adaptive bacterial foraging optimization (ABFO) and BFO based techniques[ J]. Expert Systems with Applications, 2009,36 ( 6 ) : 10097-10104.
  • 7CHEN Han-ning, ZHU Yun-long, HU Kun-yuan. Self-adaptation in bacterial foraging optimization algorithm [ C ]//Proc of the 3 rd International Conference on Intelligent System and Knowledge Engineering. 2008 : 1026-1031.
  • 8BISWAS A, DASGUPTA S, DAS S, et al. Synergy of PSO and bacterial foraging optimization: a comparative study on numerical bench- marks [ C ]//Proc of the 2nd International Symposium on Hybrid Artificial Intelligent Systems. 2007:255-263.
  • 9KIM D H, ABRAHAM A, CHO J H. A hybrid genetic algorithm and bacterial foraging approach [ J ]. Information Sciences, 2007,177 (18) :3918-3937.
  • 10LUH G C, LEE S W. A bacterial evolutionary algorithm for the job shop scheduling problem[ J]. Chinese Institute of Industrial Engineers ,2006,23 ( 3 ) : 185-191.

二级参考文献21

  • 1Holland J. Adaptation in natural and artificial systems[M]. Ann Arbor: The University of Michigan Press, 1975.
  • 2Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[C]. Proc of ECAL'91. Pads: Elsevier Publishing, 1991: 134-142.
  • 3Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]. Proc of the 6th Int Symposium on Micro Machine and Human Science. Nagoya: IEEE Robotics and Automation Society, 1995: 39-43.
  • 4Miiller S, Airaghi S, Marchelo J, et al. Optimization algorithms based on a model of bacterial chemotaxis[C]. Proc of the 6th Int Conf on Simulation of Adaptive Behavior. Pads: MIT Press, 2000: 375-384.
  • 5Passino K M. Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control Systems Magazine, 2002, 22(3): 52-67.
  • 6Liu Y, Passino K M, Polycarpou M. Stability analysis of m-dimensional asynchronous swarms with a fixed communication topology[J]. IEEE Trans on Automatic Control, 2003, 48(1): 76-95.
  • 7Mishra S. A hybrid least square-fuzzy bacteria foraging strategy for harmonic estimation[J]. IEEE Trans on Evolutionary Computation, 2005, 9(1): 61-73.
  • 8Datta T, Misra I S, Mangaraj B B, et al. Improved adaptive bacteria foraging algorithm in optimization of antenna array for faster convergence[J]. Progress in Electromagnetics Research C, 2008, 16(1): 143-157.
  • 9Majhi R, Panda G, Sahoo G. Efficient prediction of stock market Indices using adaptive bacterial foraging optimization(ABFO) and BFO based techniques[J]. Expert Systems with Applications, 2009, 36(1): 10097-10104.
  • 10Chen H, Zhu Y, Hu K. Self-adaptation in bacterial foraging optimization algorithm[C]. Proc of the 3rd Int Conf on Intelligent System and Knowledge Engineering. Xiamen, 2008: 1026-1031.

共引文献31

同被引文献43

  • 1吴俊玲,周双喜,孙建锋,陈寿孙,孟庆和.并网风力发电场的最大注入功率分析[J].电网技术,2004,28(20):28-32. 被引量:173
  • 2章毓晋.中国图像工程:2004[J].中国图象图形学报(A辑),2005,10(5):537-560. 被引量:24
  • 3KARABOGA D.An idea based on bee swarm for numerical opti-mization[R].Technical report-TR06,October,2005.
  • 4K.M.PASSINO.Biomimicry of bacterial foraging for distributedoptimization and contro[l R].IEEE Control System Magazine,2002,6:52-67.
  • 5Miler S D, Marchette J, Airaghiel S. Opimization based on bacterial chemotaxis I J]. Transactions Evolutionary Compu- tation,2002,6 ( 1 ) : 17 - 20.
  • 6Haghifam M R, Omidvar M. Wind farm modeling in reliability assessment of power system: proceedings of the 9'h interna- tional conference on prohabilistic methods applied to power systems [ C ]. Kungliga Tekniska Hegskolan ,2006 : 1 - 5.
  • 7Mishra S. Bacterial foraging technique - based optimized ac- tive power filter for Load Compensation [ J]. IEEE Transac- tions on Power Delivery,2007,22( 1 ) :457 -465.
  • 8Passino K M. Biomimicry of bacteria foraging for distributed optimization and control [ J]. IEEE Control Systems Maga- zine,2002,22 ( 3 ) :54 - 68.
  • 9Passino K M. Biomimicry of bacterial foraging for distributed optimization and control[J] . IEEE Control Systems Magazine, 2002, 22(3):52-67.
  • 10Dasgupta S, Das S, Abraham A. Adaptive computational chemotaxis in bacterial foraging optimization:an analysis[J] . IEEE Trans on Evolutionary Computation, 2009, 13(4):919-941.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部