期刊文献+

基于不确定性PPI网络的最大稠密子图挖掘 被引量:1

Mining maximal dense subgraphs in uncertain PPI network
下载PDF
导出
摘要 研究表明使用PPI数据进行蛋白质功能预测是很有意义的。然而,从生物学实验得到的PPI数据一般是含有噪声的、不完全的和不精确的,这使得将PPI网络作为不确定图来处理变得更加合理。提出了一种基于深度优先搜索策略和点扩展的挖掘算法,它可以有效地从不确定的PPI网络中挖掘最大稠密子图。该算法使用了几种高效的剪枝技术来提高挖掘的时间效率。在酵母菌PPI数据上的实验结果表明该算法在精度和效率上都有很好的表现。 Several studies have shown that the prediction of protein function using PPI data is promising.However,the PPI data generated from experiments are noisy,incomplete and inaccurate,which promotes to represent PPI dataset as an uncertain graph.This paper proposed a novel algorithm to mine maximal dense subgraphs efficiently in uncertain PPI network.It adopted several techniques to achieve efficient mining.An extensive experimental evaluation on yeast PPI network demonstrates that the approach has good performance in terms of precision and efficiency.
出处 《计算机应用研究》 CSCD 北大核心 2011年第11期4134-4137,4141,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(60703105) 西北工业大学基础研究基金资助项目(JC201042)
关键词 PPI网络 不确定图 稠密子图 期望支持度 PPI network uncertain graph dense subgraph expected density
  • 相关文献

参考文献10

  • 1GIRVAN M, NEWMAN M. Community structure in social and biological networks [ J ]. Proceedings of the National Academy of Sciences of the United States of America, 2002,99 ( 12 ) : 7821- 7826.
  • 2BADER G D, HOGUE C W. An automated method for finding molecular complexes in large protein interaction networks[ J]. BMC Bioinformatics, 2003,4 ( 2 ) : 286 - 295.
  • 3HU H, YAN X, HUANG Y,et al. Mining coherent dense subgraphs across massive biological networks for functional discovery [ J ]. BMC Bioinformatics,2005,21 (1) :213-221.
  • 4YAN X, MEHAN MR, HUANG Y,et al. A graph-based approach to systematically reconstruct human transcriptional regulatory modules [ J]. BMC Bioinformatics, 2007,23(2) :577-586.
  • 5ZOU Zhao-nian, LI Jian-zhong, GAO Hong, et al. Mining frequent subgraph patterns from uncertain graph data [ J ]. IEEE Trans on Knowledge and Data Engineering, 2010, 22 (9) : 1203-1218.
  • 6ZOU Zhao-nian, LI Jian-zhong, GAO Hong, et al. Finding Top-k maximal cliques in an uncertain graph [ C ]//Proc of the 26th Interna- tional Conference on Data Engineering. Washington DC:IEEE Computer Society,2010:649-652.
  • 7POTAMIAS M, BONCHI F, GIONIS A, et al. k-Nearest neighbors in uncertain graphs[ C]//Proc of VLDB 10. [ S. l. ] :ACM, 2010: 581-586.
  • 8YUAN Ye, CHEN Lei, WANG Guo-ren. Efficiently answering probability threshold-based SP queries over uncertain graphs [ C ]//Proc of DASFAA. Berlin : Springer-Verlag,2010 : 155-170.
  • 9WANG Miao, SHANG Xue-qun, LI Zhan-huai. MFC : mining maximal frequent dense subgraphs without candidate maintenance in imbalanced PPI networks [ J]. Journal of Software,2011,6 (3) :498- 507.
  • 10NEVAN J, GERARD C, YU Hai-yuan, et al. Global landscape of protein complexes in the yeast saccharomyces eerevisiae[ J]. Nature, 2006,10(440) : 637-643.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部