期刊文献+

不精确高斯法的局部收敛性质 被引量:1

Local convergence analysis of inexact Gauss-Newton methods
下载PDF
导出
摘要 分析了非线性最小二乘高斯牛顿法的局部收敛性质.运用Hlder连续性质,在简单的仿射不变条件下保证不精确高斯牛顿法的局部收敛性,得到收敛速率和收敛半径,同时还得到不精确高斯牛顿法的1+p阶收敛.不精确高斯牛顿法用较弱的条件代替牛顿法较强的条件,并运用Matlab进行运算,得到较理想的结果. Analyzes the nonlinear least squares problems of the local convergence of Ganss-Newton methods, convergence rate and the corresponding radius of convergence. Inexact Ganss-Newton methods require weaker conditions instead of stronger conditions for Newton methods, and the computations by Matlab show ideal Results.
出处 《上海师范大学学报(自然科学版)》 2011年第5期460-468,共9页 Journal of Shanghai Normal University(Natural Sciences)
基金 国家自然科学基金(110871130)
关键词 最小非线性二乘法 不精确高斯牛顿法 LIPSCHITZ条件 nonlinear least squares problems inexact Gauss-Newton methods lipschitz condition
  • 相关文献

参考文献11

  • 1YPMA T J. Local conwergence of inexact Newton methods [ J ]. SIAM J Optimization, 1984,21:583 -590.
  • 2YPMA T J. Local convergence of difference Newton -like methods [ J ]. Math Comput, 1983,37:109 - 118.
  • 3YPMA T J. Affine invariant convergence results for Newton's method [ J ]. BIT, 1982,22 : 108 - 118.
  • 4CHEN J H. The convergence analysis of inexact Gauss - Newton methods for nonlinear problems [ J ]. Comput optim Appl, 2008,40:97 - 118.
  • 5CHEN J H, LI W. Convergence of Gauss - Newton's method and uniqueness of the solution [ J ]. Appl Math Comput, 2005,170:686 - 705.
  • 6CI-IEN J H, LI W. Convergence behaviour of inexact Newton methods under weak Lipschitz condition [ J ]. J Comput Appl Math,2006,191 : 143 - 164.
  • 7KANTOROVICH L V, AKILOV G P. Functional Analysis [ M ]. 2nd ed. Oxford: Pergamon, 1982.
  • 8LI C ,ZHANG W H,JIN X Q. Convergence and uniqueness properties of Gauss - Newton's method[ J]. Comput Math Appl,2004,47 : 1057 - 1067.
  • 9ORTEGA J M, RHEINBOLDT W C. Iterative Solution of Nonlinear Equations in Several Variables [ M ]. New York:Academic Press, 1970.
  • 10RON S. DEMBO, STANLEY C. EISENSTAT, TROND STEIHAUG. Inexact Newton methods [ J ]. SIAM J Numer Anal, 1982,19:400 -408.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部