期刊文献+

基于MCMC的贝叶斯长记忆随机波动模型研究 被引量:1

Markov Chain Monte Carlo Methods for Bayesian Long Memory Stochastic Volatility Models
下载PDF
导出
摘要 针对贝叶斯长记忆随机波动模型的单步Gibbs抽样算法效率低下的问题,通过对模型在状态空间框架下的近似表示,将向前滤波向后抽样算法引入对波动变量的估计过程中,同时在贝叶斯框架下分析了模型参数的满条件后验分布,设计出Gibbs联合抽样算法.更进一步,在对模型进行参数估计的基础上,提出波动变量的向前多步预报分布的估计方法.模拟实验结果表明:联合Gibbs抽样算法能够在保证估计精度的基础上得到优于单步Gibbs抽样方法的抽样效率,对预报分布的特征分析可用于对金融时间序列的风险控制. This paper was concerned with simulation-based inference in generalized models of stochastic volatility with long memory. A more efficient Markov Chain Monte Carlo sampling method was exploited to the analysis of the model, compared with the single step Gibbs sampling method. Based on the truncated likelihood method, in which the long memory stochastic volatility model was expressed as a linear state space model, we utilized the forward filtering backward sampling method to sample all the unobserved volatilities simultaneously. A simulation method for Bayesian prediction analysis of the volatilities was also developed. The simulation study has given the results of estimated parameters and evaluated the performance of our method. Moreover, the prediction analysis of the volatility can be used to control the risk of financial series.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第10期82-87,共6页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(NSFC70771038) 国家自然科学基金项目重点项目(71031004) 教育部留学回国人员科研启动基金项目(教外司留[2010]609) 教育部长江学者与创新团队发展计划<经济管理复杂系统中的建模 优化与决策研究>(IRT0916) 国家社科基金重点资助项目(11AJL008)
关键词 仿真分析 随机波动 贝叶斯分析 抽样 马尔科夫过程 simulation stochastic volatility Bayesian analysis simulation markov processes
  • 相关文献

参考文献12

  • 1ENGLE R. Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation[J]. Economet Rica, 1982, 50:987-1008.
  • 2BOLLERSLEV T. Generalized autoregressive conditional heteroseedastieity[J]. Journal of Econometrics, 1086, 31, 307-- 327.
  • 3KIM S, SHEPHARD N, CHIB S. Stochastic volatilitys likelihood inference and comparison with ARCH models[J]. Review of Economic Studies, 1998, 65(3): 361--394.
  • 4BREIDT F J, CARTO N, DELIMA P. On the detection and estimation of long memory in stochastic volatility[J]. Journal of Econometrics, 1998, 83, 325--348.
  • 5SO M K P, SUSANNA W Y K. A multivariate long memory stochastic volatility model[J]. Physiea A, 2006, 362: 450-- 464.
  • 6苏卫东,张世英.多元长记忆SV模型及其在沪深股市的应用[J].管理科学学报,2004,7(1):38-44. 被引量:7
  • 7BENT J C, MORTEN Q N. The effect of long memory in volatility on stock market fluctuations[J]. The Review of Eco- nomies and Statistics, 2007, 89(4) : 684--700.
  • 8DEO R, HURVICH C. On the log-periodogram regression estimator of the memory parameter in the long-memory stochastic volatility models[J]. Econometric Theory, 2001, 17:686 --710.
  • 9ISLAS-CAMARGO A, VENEGAS-MARTINEZ F. Longmemory volatility in Latin American stock markets[R]. Department of Statistics, ITAM, 2003.
  • 10朱慧明,李素芳,虞克明,曾慧芳,林静.基于Gibbs抽样的贝叶斯金融随机波动模型分析[J].湖南大学学报(自然科学版),2008,35(12):88-92. 被引量:4

二级参考文献43

  • 1周学勤,秦成林.随机波动率下最优投资问题的逼近解[J].上海大学学报(自然科学版),2005,11(4):431-435. 被引量:1
  • 2徐梅,张世英.基于小波变换的长记忆随机波动模型估计方法研究[J].中国管理科学,2006,14(1):7-14. 被引量:10
  • 3GIRAITIS LR, LEIPUS PM, SURGAILIS, et al. Leverage and long memory [ J ]. Journal of Financial Econometrics. 2004, 2 (2) : 177 - 210.
  • 4DEVANEY M. Time varying risk premia for real estate investment trusts: A GARCH-M model[J]. The Quarterly Review of Economics and Finance,2001,41 (3) : 335 - 346.
  • 5TAYLOR SJ. Modeling stochastic volatility: A review and comparative study[ J ]. Mathematical Finance, 1994,4 (2) : 183 - 204.
  • 6GHYSELS E. Structural change tests for simulated method of moments[J ], Journal of Econometrics, 2003,115 ( 1 ) : 91 - 123.
  • 7DUE D. Simulated moments estimation of markov models of asset prices [J]. Econometriea,2000,68(4) :929 - 952.
  • 8TSAI H S, CHAN K S. Quasi-Maxlmum likelihood estimation for a class of continuous-time long-memory processes[J]. Journal of Time Series Analysis, 2005,26 (5) : 691 - 713.
  • 9ZELLNER A. Bayesian and non-bayesian approaches to scientific modeling and inference in economies and econometries [ C]//The proceeding of the 7th Econometric Society World Congress. Seattle, 2000,1206 - 1239.
  • 10KIM S, SHEPHARD N. Stochastic volatility: likelihood inference and comparison with ARCH models[J]. Review of Economic Studies. 1998, 65(2): 361-393.

共引文献9

同被引文献10

  • 1邱崇洋,刘继春,陈永娟.带ARMA(1,1)条件异方差相关的随机波动模型的MCMC算法[J].数学研究,2006,39(4):414-421. 被引量:2
  • 2周宏山,冀云.非对称随机波动模型在中国股市的应用[J].统计与信息论坛,2007,22(4):70-73. 被引量:4
  • 3Jacquier E, Nicholas G P, Rossi P E. Bayesian Analysis of Stochastic Volatility Models with Fat-tails and Correlated Er- rors[J]. Journal of Econometrics, 2004(2).
  • 4Cappuccio N, Lubian D. MCMC Bayesian Estimation of a Skew-GED Stochastic Volatility Model[J]. Studies in Nonlin- ear Dynamics Econometrics,2004(8).
  • 5Bovas A N Balakrishna,Ranjini S. Gamma Stochastic Volatility Models[J]. Journal of Forecasting, 2006(3).
  • 6Mike K P So, Li W K. A Threshold Stochastic Volatility Model[J]. Journal of Forcasting, 2002(7).
  • 7Bredit F J, N Cratoand P, deLima. The Detection and Estimation of Long Memory in Stochastic Volatility[J]. Journal of Econometrics, 1998(83).
  • 8Luis A, Gil--Alana, Juncal C, Fernando P D G. Stochastic Volatility in the Spanish Stock Market: A Long Memory Model with a Structural Break[J]. The European Journal of Finance,2008(1).
  • 9Taylor S J. Modeling Stochastic Volatility: A Review and Comparative Study[J-. Mathematical Finance, 1994(4).
  • 10Kim S, Shephard N, Chib S. Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models[J]. Review of Economic Studies, 1998(3).

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部