摘要
针对贝叶斯长记忆随机波动模型的单步Gibbs抽样算法效率低下的问题,通过对模型在状态空间框架下的近似表示,将向前滤波向后抽样算法引入对波动变量的估计过程中,同时在贝叶斯框架下分析了模型参数的满条件后验分布,设计出Gibbs联合抽样算法.更进一步,在对模型进行参数估计的基础上,提出波动变量的向前多步预报分布的估计方法.模拟实验结果表明:联合Gibbs抽样算法能够在保证估计精度的基础上得到优于单步Gibbs抽样方法的抽样效率,对预报分布的特征分析可用于对金融时间序列的风险控制.
This paper was concerned with simulation-based inference in generalized models of stochastic volatility with long memory. A more efficient Markov Chain Monte Carlo sampling method was exploited to the analysis of the model, compared with the single step Gibbs sampling method. Based on the truncated likelihood method, in which the long memory stochastic volatility model was expressed as a linear state space model, we utilized the forward filtering backward sampling method to sample all the unobserved volatilities simultaneously. A simulation method for Bayesian prediction analysis of the volatilities was also developed. The simulation study has given the results of estimated parameters and evaluated the performance of our method. Moreover, the prediction analysis of the volatility can be used to control the risk of financial series.
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2011年第10期82-87,共6页
Journal of Hunan University:Natural Sciences
基金
国家自然科学基金资助项目(NSFC70771038)
国家自然科学基金项目重点项目(71031004)
教育部留学回国人员科研启动基金项目(教外司留[2010]609)
教育部长江学者与创新团队发展计划<经济管理复杂系统中的建模
优化与决策研究>(IRT0916)
国家社科基金重点资助项目(11AJL008)
关键词
仿真分析
随机波动
贝叶斯分析
抽样
马尔科夫过程
simulation
stochastic volatility
Bayesian analysis
simulation
markov processes