期刊文献+

一类二阶常p-Laplace系统周期解的存在性 被引量:2

Periodic Solutions for Second-order Ordinary p-Laplacian System
下载PDF
导出
摘要 Hamilton系统理论是经典而又现代化的研究领域,其广泛存在于数理科学,生命科学及社会科学等各个领域,特别是经典力学和场论中很多模型都以Hamilton系统的形式出现。本文通过应用临界点理论中的极小极大方法,研究一类常p-Laplace系统非平凡周期解的存在性,所得结构推广了二阶Hamilton系统的相关结果。 By using minimax methods in critical point theory,a new existence theorem of periodic solutions is obtained for a second-order ordinary p-Laplacian system.The result obtained generalizes some known works in the literature.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2011年第3期28-32,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10961005 11161051)
关键词 周期解 极小极大方法 临界点 常p-Laplace系统 periodic solution minimax methods critical point ordinary p-Laplacian system
  • 相关文献

参考文献12

  • 1FEI Gui-hua. On periodic solutions of superquadratic Hamiltonian systems[J]. Electron J Differential Equations, 2002 (8):1-12.
  • 2LI Shu-jie ,WILLEM M. Applications of local linking to critical point theory[J]. J Math Anal Appl, 1995,189(1):6- 32.
  • 3MAWHIN J,WILLEM M. Critical point theory and Hamiltonian systems[M]. New York :Springer-Verlag, 1989.
  • 4RABINOWITZ P H. Minimax methods in critical point theory with applications to differential equations[M]. Providence,RI: Amer Math Soc, 1986.
  • 5SCHECHTER M. Periodic non-autonomous second order dynamical systems[J]. J Differential Equations, 2006,223 (2) :290-302.
  • 6SCHECHTER M. Periodic solutions of second order non-autonomous dynamical systems[J]. Boundary Value Problems, 2006 (1): 1-9.
  • 7TAO Zhu-lian,TANG Chun-lei. Periodic solutions of second-order Hamiltonian systems[J]. J Math Anal Appl,2004, 293(2):435-445.
  • 8TAO Zhu-lian,YAN Shang-an,WU Song-lin. Periodic solutions for a class of superquadratic Hamihonian systems [J]. J Math Anal Appl,2007,331 (1): 152-158.
  • 9TANG Chun-lei,WU Xing-ping. Notes on periodic solutions of subquadratic second order systems[J]. J Math Anal Appl,2003,285(1):8-16.
  • 10TIAN Yu,GE Wei-gao. Periodic solutions of non-autonomous second order systems with p-Laplacian[J]. Nonlinear Anal, 2007,66 (1): 192-203.

同被引文献22

  • 1廖为,蒲志林.一类拟线性椭圆型方程Dirichlet问题正解的存在性[J].四川师范大学学报(自然科学版),2007,30(1):31-35. 被引量:7
  • 2Bouchut F,Golse F,Pulvirenti M.Kinetic Equations and Asymptotic Theory[M].Paris:Gauthiers-Villars,2000.
  • 3Donatelli D,Marcati P.Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems[J].Trans Am Math Soc,2004,356:2093-2121.
  • 4Marcati P,Rubino B.Hyperbolic to parabolic relaxation theory for quasilinear first order systems[J].J Diff Eqns,2000,162:359-399.
  • 5Brenier Y,Natalini R,Puel M.On a relaxation approximation of the incompressible Navier-Stokes equations[J].Proc Am Math Soc,2004,132:1021-1028.
  • 6Jin S,Liu H L.Diffusion limit of a hyperbolic system with relaxation[J].Meth Appl Anal,1998,5:317-334.
  • 7Yong W A.Relaxation limit of multi-dimensional isentropic hydrodynamical models for semiconductors[J].SIAM J Appl Math,2004,64:1737-1748.
  • 8Natalini R,Rousset F.Convergence of a singular Euler-Poisson approximation of the incompressible Navier-Stokes equations[J].Proc Am Math Soc,2006,134:2251-2258.
  • 9Xu J,Yong W A.Relaxation-time limits of non-isentropic hydrodynamic models for semiconductors[J].J Diff Eqns,2009,247:1777-1795.
  • 10Yang J W,Wang S.The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas[J].J Math Anal Appl,2011,380:343-353.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部