摘要
The microstructures and mechanical properties of Ni-(46-x)Ti-4Al-xZr (x = 0-8, at.%) alloys have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and mechanical tests. The results show that the Ni-Ti-Al-Zr alloys are composed of TiNi and (Ti, Al) 2 Ni with Zr as a solid solution element in both phases, and the third phase, (Zr, Ti, Al) 2 Ni, appears in Ni-40Ti-4Al-6Zr and Ni-38Ti-4Al-8Zr alloys. The compressive yield strength at room temperature increases with the increase of Zr content due to the solid-solution strengthening of Zr and precipitation strengthening of (Ti, Al, Zr) 2 Ni phase. However, the Ni-42Ti-4Al-4Zr alloy exhibits the maximum compressive yield strength at 873 and 973 K because of the softening of (Zr, Ti, Al) 2 Ni phase in the alloys with more Zr addition. The tensile stress-strain tests and the SEM fracture surface observations show that the brittle to ductile transition temperature of Ni-42Ti-4Al-4Zr alloy is between 873 and 923 K.
The microstructures and mechanical properties of Ni-(46-x)Ti-4Al-xZr (x = 0-8, at.%) alloys have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and mechanical tests. The results show that the Ni-Ti-Al-Zr alloys are composed of TiNi and (Ti, Al) 2 Ni with Zr as a solid solution element in both phases, and the third phase, (Zr, Ti, Al) 2 Ni, appears in Ni-40Ti-4Al-6Zr and Ni-38Ti-4Al-8Zr alloys. The compressive yield strength at room temperature increases with the increase of Zr content due to the solid-solution strengthening of Zr and precipitation strengthening of (Ti, Al, Zr) 2 Ni phase. However, the Ni-42Ti-4Al-4Zr alloy exhibits the maximum compressive yield strength at 873 and 973 K because of the softening of (Zr, Ti, Al) 2 Ni phase in the alloys with more Zr addition. The tensile stress-strain tests and the SEM fracture surface observations show that the brittle to ductile transition temperature of Ni-42Ti-4Al-4Zr alloy is between 873 and 923 K.
基金
supported by the National Natural Science Foundation of China (No. 50501001)
the Aeronautical Science Foundation of China