期刊文献+

Ti-H_2O_2反应添加嵌段共聚物制备光催化活性的TiO_2薄膜(英文) 被引量:2

Photocatalytic Active Titania Thin Films through Oxidation of Metallic Ti in Aqueous H_2O_2 Solutions Containing Various Block Copolymers
原文传递
导出
摘要 利用添加了嵌段共聚物P123、F127及硝酸的双氧水溶液直接氧化钛金属基体制备不同纳米形貌TiO2光催化薄膜。采用X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见漫反射光谱(UV-VisDRS)等技术分析样品的微观结构和形貌,以光催化降解若丹明B测定薄膜的光催化性能。结果表明,Ti-H2O2反应体系中仅添加嵌段共聚物的薄膜结晶呈树枝状,加入硝酸后薄膜形成纳米花结构。450oC热处理后,薄膜为锐钛矿与金红石的混晶结构,平均晶粒尺寸在12~20nm之间。薄膜的间接禁带宽度为2.65~2.85eV,显著低于TiO2块体。添加P123获得的薄膜的光催化性能优于添加F127的薄膜。 Various nanostructured titania thin films were fabricated by direct oxidation of metallic Ti substrates in hydrogen peroxide solutions with the additives of nitric acid and block copolymers of P123 or F127. X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS) were utilized to analyze the morphology and structure of the titania films. Photocatalytic properties of the thin films were evaluated by the degradation of rhodamine B in water under the illumination of a high-pressure mercury lamp. The film only with the block copolymer additive consists of rod-like titania; while flower-like titania aggregates are achieved when both block copolymers and nitric acid are added to the hydrogen peroxide solution. After a subsequent calcination at 450 ℃, all the titania films are crystallized further to a mixture of anatase and rutile with a similar average grain size. An indirect bandgap of 2.65-2.85 eV is estimated for the present films, which is significantly lower that of the bulk titania. The titania film derived with the P123 additive shows higher photocatalytic activity than that with the F127 additive, either with or without the additive of nitric acid.
机构地区 浙江大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第10期1703-1707,共5页 Rare Metal Materials and Engineering
基金 National Natural Science Foundations of China (50502029) Natural Science Foundation of Zhejiang Province, China (Y4080001)
关键词 纳米结构 薄膜 光催化 氧化 nanostructures thin films photocatalysis oxidation
  • 相关文献

参考文献24

  • 1ChenFengying(陈凤英).稀有金属材料与工程,2008,37(2):34-34.
  • 2Cheng T C, Chang C Yet al. Surface & Coatings Technology[J], 2008, 203:925.
  • 3Mor G K, Carvalho MA et al. JMarRes[J], 2004, 19:628.
  • 4Zhao Q, Jing J Jet al. J Chin Chem Soc[J], 2008, 36:1.
  • 5Mahajan V K, Mohapatra S K, Misra M. Int J Hydrogen Energy[J], 2008, 33:5369.
  • 6Liu Q J, Zhou M, Liu Q et al. Trans Nonferrous Met Soc China[J], 2006, 16(S): 411.
  • 7Wu J M. J Cryst Growth[J], 2004, 269:347.
  • 8Chen X, Mao S S. Chem Rev[J], 2007, 107:2891.
  • 9Li J, Zhong Y J, Li G C. MaterRes Bull[J], 2009, 44:999.
  • 10Wu J M, Qi B. JAm Ceram Soc[J], 2007, 90:657.

同被引文献26

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部