期刊文献+

黄土丘陵沟壑区典型小流域SCS-CN方法初损率取值研究 被引量:27

Calibration of SCS-CN Initial Abstraction Ratio of a Typical Small Watershed in the Loess Hilly-Gully Region
下载PDF
导出
摘要 【目的】初损率是SCS-CN方法进行流域地表径流预报的基础输入参数之一,影响着径流模拟精度。论文通过研究确定黄土丘陵沟壑区典型小流域初损率取值,为SCS-CN方法在该地区的适用性评价提供参考。【方法】SCS-CN方法中,初损率定义为初损量(Ia)与流域最大蓄水能力(S)的比值,通常取标准值0.2。然而,已有研究表明不同区域初损率取值存在差异。论文选取黄土丘陵沟壑区桥子西沟小流域1987—2006年14场典型降雨事件,采用反算法(BC)和事件分析法(EA)确定流域初损率。【结果】结果表明,两种方法计算初损率均小于标准值0.2,事件分析法计算值(0.17)与反算法计算值(0.1)相比略偏大。初损率取0.1、0.17和0.2分别计算研究降雨事件径流深,采用皮尔逊相关系数(r)、模型效率系数(E)、相对误差(RE)、绝对误差(AE)和图形拟合5种评价标准分析模拟结果,确定研究流域初损率为0.1。论文采用两种算法计算桥子西沟流域初损率,结果与标准值显著不同,初步推断是研究流域与SCS-CN方法最初研发区域地质地貌及气候条件存在较大差异所致。【结论】不同区域应用SCS-CN方法时,需利用当地观测数据率定研究流域初损率,才能进行流域地表水文模拟。 【Objective】 The initial abstraction ratio,as one of the basic inputs of SCS-CN method,plays an important role in watershed rainfall-runoff simulation.In this study,attempt was made to determine the initial abstraction ratio of a typical small watershed in the Loess hilly-gully region,in order to supply some references for regional applicability assessment of SCS-CN method.【Method】In SCS-CN method,the proportion of initial abstraction(Ia) to the maximum retention(S) is defined as initial abstraction ratio,which was believed to have a standard value of 0.2.However,many studies indicate that variations of the ratio exist in different regions.In this study,14 typical rainstorms in 1987-2006 in Qiaozi-West watershed were selected to calculate the initial abstraction ratio using Back Calculation(BC) and Event Analysis(EA) methods.【Result】Results showed that most of the values calculated by the two methods were lower than the standard value of 0.2.Moreover,the value(0.17) determined by EA method was a little higher than that(0.1) by BC method.By assigning 0.1,0.17 and 0.2 to initial abstraction ratio,the runoff depth of each study event was calculated,respectively.Through five evaluation criteria of Pearson correlation coefficient(r),model efficiency coefficient(E),relative error(RE),absolute error(AE) and curve fitting,0.1 was found to be the appropriate value for the watershed initial abstraction ratio.The results indicated that the derived initial abstraction ratio by the two methods differed markedly from the standard value.This may be due to the discrepancies in geologic,geomorphologic and climatic circumstances between the loess hilly-gully region and the originally intended areas of SCS-CN method.【Conclusion】 It is essential to calibrate the initial abstraction ratio using locally observed data prior to SCS-CN method application.
出处 《中国农业科学》 CAS CSCD 北大核心 2011年第20期4240-4247,共8页 Scientia Agricultura Sinica
基金 国家自然科学基金(40635027)
关键词 SCS-CN 初损率 小流域 黄土丘陵沟壑区 SCS-CN initial abstraction ratio small watershed loess hilly-gully region
  • 相关文献

参考文献28

  • 1Shi Z H, Chen L D, Fang N F, Qin D F, Cai C F. Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. Catena, 2009, 77(1): 1-7.
  • 2Perrin C, Michel C, Andréassian V. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. Journal of Hydrology, 2001, 242(3/4): 275-301.
  • 3Mockus V. Estimation of direct runoff from storm rainfall//Soil Conservation Service. United States Department of Agriculture. National Engineering Handbook Handbook, Section 4. Hydrology. Washington D C: Soil Conservation Service. United States Department of Agriculture, 1972, 10: 1-30.
  • 4Ponce V M, Hawkins R H. Runoff curve number: has it reached maturity? Journal of Hydrologic Engineering,1996, 1(1): 11-19.
  • 5Mishra S K, Jain M K, Pandey R P, Singh V P. Catchment area-based evaluation of the AMC-dependent SCS-CN-based rainfall-runoff models. Hydrological Processes, 2005, 19(14): 2701-2718.
  • 6Mishra S K, Singh V P. SCS-CN-based hydrologic simulation package//Singh V P, Frevert D K, eds. Mathematical Models of Small Watershed Hydrology and Applications. Highlands Ranch: Water Resources Publications, 2001: 391-464.
  • 7Mishra S K, Singh V P. Validity and extension of the SCS-CN method for computing infiltration and rainfall-excess rates. Hydrological Processes, 2004, 18(17): 3323-3345.
  • 8Kliment Z, Kadlec J, Langhammer J. Evaluation of suspended load changes using AnnAGNPS and SWAT semi-empirical erosion models. Catena, 2008, 73(3): 286-299.
  • 9Tyagi J V, Mishra S K, Singh R, Singh V P. SCS-CN based time-distributed sediment yield model. Journal of Hydrology, 2008, 352(3/4): 388-403.
  • 10Mishra S K, Tyagi J V, Singh V P, Singh R. SCS-CN-based modeling of sediment yield. Journal of Hydrology, 2006, 324(1/4): 301-322.

二级参考文献37

  • 1Bosznay M. Generalization of SCS curve number method[J]. Journal of Irrigation and Drainage Engineering,1989,155(1):139-144.
  • 2Wolock D M. Effects of sub-basin size on topographic characteristics and simulated flow paths in sleepers river watershed [J ]. Water Resources Research, 1995, 31 (8):1989-1998.
  • 3U.S. Department of Agriculture. Soil Conservation Serv ice. Hydrology [M]. In SCS National Engineering Handbook, Section4. U.S. Gov. Print. Office. Wash- ington, D.C., 1972.
  • 4Rallison R E, Cronshey R G. Discussion of“runoff curve numbers with varying site moisture”[J]. Journal of the Irrigational Drainage Division, ASCE, 1979, 105: 439-441.
  • 5Sobhani G. A review of possible watershed design methods for possible adoption to Iranian conditions[D]. Utah:Utah State Univ. , 1976.
  • 6Donald E, Woodward, Richard H, Jiang, et al. Runoff curve number method: examination of the initial abstraction [R]. TRB 2004 Annual Meeting CD-ROM, 2004.
  • 7Ponce V M, Hawkins R H. Runoff curve number: Has it reached maturity [J]. Hydrologic Engineering, ASCE,1996,1(1) :11--19.
  • 8Boughton W C. A review of the USDA SCS curve number method [J]. Australian: Journal of Soil Research, 1989, 27: 511-523.
  • 9USDA-SCS. Urban hydrology for small watersheds. Technological Release No. 55 (TR-55)[S]. Washington, D. C. ,1986.
  • 10Mockus V. Estimation of total(and peak rates of) surface runoff for individual storms [M]. U.S. Department of Agriculture, Washington, D. C. , 1949.

共引文献94

同被引文献226

引证文献27

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部