期刊文献+

有源噪声控制次级声源的非线性建模 被引量:4

Nonlinearity modeling of secondary sound source in active noise control
下载PDF
导出
摘要 基于电动扬声器的顺性、磁力因子和音圈自感三个非线性参数,建立了基于电力声类比线路方法的次级声源非线性时域模型。采用该模型对次级声源总谐波失真(THD)进行仿真,并与测试结果进行比较,结果表明在较低频率范围、较大输入信号幅值的情况下,该非线性模型是可行的。将该模型引入有源噪声控制系统,并以滤波-XLM S算法为例,对采用次级声源理想模型、线性时域模型和非线性时域模型的控制系统分别进行仿真,结果表明采用非线性模型系统的降噪量远低于采用其他模型的系统,并且非线性失真度大小对降噪量也具有明显的影响。 The nonlinearity of secondary sound source based on analogue circuits of electrical, mechanical and acoustical sys- tems is modeled in the time domain by considering three nonlinear parameters of electrodynamic loudspeaker including compli- ance, force factor and voice coil inductance. The total harmonic distortion (THD) of secondary sound source is simulated hy using this model and compared with the measured results. It shows that the nonlinear model is feasible while the frequency of input signal is low and its amplitude is large. This model is introduced into active noise control system, and the control sys- tems with ideal model, linear model and nonlinear model of secondary sound source in the time domain are simulated respec- tively by taking the algorithm of Filtered-X LMS for example. The results show that the system with nonlinear model has much less reduction of the noise level than the systems with other models and the magnitude of nonlinear distortion has dis- tinctive effect on the noise reduction.
出处 《振动工程学报》 EI CSCD 北大核心 2011年第5期562-567,共6页 Journal of Vibration Engineering
基金 湖南大学汽车车身先进设计制造国家重点实验室自主研究课题(60870002)
关键词 有源噪声控制 次级声源 类比线路法 非线性失真 active noise control secondary sound source analogue circuits~ nonlinear distortion
  • 相关文献

参考文献13

  • 1Quaegebeur N, Chaigne A. Nonlinear vibrations of loudspeaker-like structures [J]. Journal of Sound and Vibration, 2008, 309: 178-196.
  • 2Snyder S D, Hansen C H. The effect of transfer function estimation errors on the filtered-X LMS algorithm [J]. IEEE Trans. on Signal Processing, 1994, 42(4):950-953.
  • 3Zhang Q Z, Gan W S, Zhou Y L. Adaptive recurrent fuzzy neural networks for active noise control [J]. Journal of Sound and Vibration, 2006, 296: 935-948.
  • 4张涛,周亚丽,张奇志.Filter-S LMS算法的非线性有源噪声控制的研究[J].噪声与振动控制,2008,28(2):62-65. 被引量:3
  • 5Das D P, Panda G. Active mitigation of nonlinear noise processes using a novel filtered-x LMS algorithm [J]. IEEE Trans. Speech Audio Proeess, 2004, 12 (3): 313-322.
  • 6ReddyEP, Das D P, Prabhu K M M. Fast exact multichannel FSLMS algorithm for active noise control [J]. Signal Processing, 2009, 89: 952-956.
  • 7Zhao H, Zeng X, Zhang J. Adaptive reduced feed- back FLNN filter for active control of nonlinear noise processes[J]. Signal Processing, 2010,90 : 834-847.
  • 8Ravauda R, Lemarquand G, Roussela T. Time-varying nonlinear modeling of electrodynamic loudspeakers [J]. Applied Acoustics, 2009, 70: 450-458.
  • 9Sankar D, Thomas T. Nonlinear modeling of loud-speaker using adaptive second order Volterra filters [A]. IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES) [C], 2007 : 87-92.
  • 10Klippel W. Loudspeaker nonlinearities - cause, parameters, symptoms[J]. Journal of the Audio Engineering Society, 2006, 54:907-939.

二级参考文献8

  • 1Lueg P. Process of Silencing. Sound O Scillation [ Z ]. U S. Patent 2 043 416 (1936).
  • 2C. C. Boucher, S. J. Elliott, P. A. Nelson. Effect of Errors in the Plant Model on the Performance of Algorithms for Adaptive Feedforward Control [ J ]. IEEE Proc. F. Radar Signal Process. 1991,138:3.13 - 319.
  • 3Snyder. S. D, Tanaka. N. Active Control of Vibration U- sing a Neural Network [ J ]. IEEE Trans. Neural Networks. 1995,6(4) :819 - 828.
  • 4S. M. Kuo, D. R. Morgan. Active Noise Control: A Tutorial Review [ J ]. Proceedings of The IEEE, 1999, 87(6).
  • 5Sen M. Kuo, Issa Panahi, Kai M. Chung. Design of Active Noise Control Systems With the TMS320 Family [ M]. Texas Instruments Incorporated, June 1996.
  • 6D. P. Das, G. Panda, Active Mitigation of Nonlinear Noise Processes Using a Novel Fihered-s LMS Algorithm [J]. IEEE Trans. on Speech and Audio Proc. 2004, 12 (3) :313 -322.
  • 7Debi Prasad. Das, Arun. Sagar, S. Raghunath. Development of Hartley Domain fihered-s LMS Algorithm for Active Noise Control System [ C ]. Sixth International Symposium on Active Noise and Vibration Control. 2006.
  • 8Zhou, Y. L., Zhang, Q. Z., Li, X. D., Gan, W. S. : Analysis and DSP Implementation of an ANC System Using a Filtered-Error Neural Network [ J ]. Journal of Sound and Vibration, 2005,285( 1 ) :1 -25.

共引文献2

同被引文献34

  • 1薛福珍,柏洁.基于先验知识和神经网络的非线性建模与预测控制[J].系统仿真学报,2004,16(5):1057-1059. 被引量:14
  • 2肖斌,杨铁军,刘志刚.柴油机主动隔振液压执行器线性化控制仿真研究[J].哈尔滨工程大学学报,2006,27(2):212-217. 被引量:2
  • 3李维嘉,曹青松.船舶振动主动控制的研究进展与评述[J].中国造船,2007,48(2):68-79. 被引量:40
  • 4Ding F, Chen T, Iwai Z. Adaptive digital control of Hammerstein nonlinear systems with limited output sampling, SIAM J. Control Optim, 2006, 45 (6) : 2257 - 2276.
  • 5Ding F, Liu X P, Liu G J. Identification methods for Hammerstein nonlinear systems [ J ]. Digital Signal Processing, 2011, 21: 215- 238.
  • 6Khosrow L. A Modified Voherra-Wiener-Hammerstein model for loudspeaker precompensation [ J ]. Signals, Systems and Computers, 2005 : 344 - 348.
  • 7Sanathanan C K, Koeruer J. Transfer function synthesis as the ratio of two complex polynomials [ J ]. IEEE Transactions on Automatic Control. 1963, 9 ( 1 ) : 56 - 58.
  • 8Pintelon R, Guillaume P, Rolain Y, et al. Parametric identification of transfer function in the frequency domain, a survey[ J]. Proceedings of the 32nd conference on Decision and Control, 1993 : 557 - 566.
  • 9Bayard S D. High - order multivariable transfer function curve fitting: algorithms, sparse matrix methods and experimental results[J]. Automatica, 1994, 30 (9): 1439-1444.
  • 10Verboven P, Cauberghe B, Guillaume P. Improved total least squares estimators for modal analysis [ J ]. Computers & Structures . 2005, 83 : 2077 - 2085.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部