期刊文献+

基于贝叶斯多层先验的元建模研究 被引量:2

Research on Meta-modeling Using Bayesian Hierarchical Priors
下载PDF
导出
摘要 计算机试验成为一种研究复杂物理系统的替代方法,它引起了人们的关注。元模型的求解问题是计算机试验中研究其它问题的基础。通过贝叶斯多层先验,提出了一种新的计算机试验中求解元模型的方法。新方法通过EM(expectation-maximization)算法求解,并且将之与国际上的几种已有的方法进行了比较。试验结果表明,这种新的方法取得了较理想的试验结果,并且大大地较少了计算的负担。 Computer experiments have become an attractive alternative to study complex physical systems. Computer experiments are primarily on the task of recta-modeling, which is the central to achieving any goal in computer experiments. A novel approach of meta-modeling was proposed for computer experiments via Bayesian hierarchical prior. Implementation was carried out by an EM (expectationmaximization) algorithm and some other methods were compared with. Experimental results demonstrate that the new approach not only yields state-of-art performance, but also has low computational cost.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第11期2291-2295,共5页 Journal of System Simulation
基金 国家自然科学基金重点项目(70931002) 南京审计学院人才引进项目(NSRC11009)
关键词 计算机试验 变量的选择 元模型 稀疏性 插值 computer experiments variable selection meta-modeling sparseness interpolation
  • 相关文献

参考文献19

  • 1Sacks J, Schiller S B, Welch W J. Designs for Computer Experiments [J]. Technometrics (S0040-1706), 1989, 31(1): 41-47.
  • 2Sacks J, Welch W J, Mitchell T J, Wynn H P. Design and analysis of computer experiments [J]. Statistical Science (S0883-4237), 1989, 4(4): 409-423.
  • 3Kleijnen J P C. Statistical Tools for Simulation Practitioners [M]. New York, USA: Marcel Decker, 1987.
  • 4Santner T J, Willianms B J, Notz W I. The Design and Analysis of Computer Experiment [M]. Berlin, Germany: Springer-Verlag, 2003.
  • 5Fang K T, Li R, Antoniadis A. Design and Modeling for computer experiments [M]. London, UK: Chapman & Hall/CRC, 2006.
  • 6Donoho D L. High-dimensional Data Analysis: the Curses and Blessings of Dimensionality, Aide-Memoire of the lecture in AMS conference, Math challenges of 21st Century, 2000. [R/OL]. (2000-8-8) [2009-8-1]. http://donoho/Lectures.
  • 7Frank I E, Friedman J H. A Statistical View of Some Chemometrics Regression Tools [J]. Technometrics (S0040-1706), 1993, 35(2): 109-148.
  • 8Tibshirani R J. Regression Shrinkage and Selection via the LASSO [J]. Journal of the Royal Statistical Society (S0952-8385), 1996, 58(1): 267-288.
  • 9Efron B, Johnstone I, Hastie T, Tibshirani R. Least Angle Regression [J]. Annals of Statistics (S0090-5364), 2004, 32(2): 407-499.
  • 10Hamada M, Wu C F J. Analysis of Designed Experiments with Complex Aliasing [J]. Journal of Quality Technology (S0022-4065), 1992, 24(1): 130-137.

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部