期刊文献+

水和乙醇悬浮液等离子喷涂SOFC电解质层的工艺及涂层特点比较 被引量:2

Comparision of the Process and Characteristics of Electrolytic Layers for SOFC by Water and Alcohol Based Suspension Plasma Spraying
下载PDF
导出
摘要 选用水和乙醇两种溶剂配置悬浮液,研究了分散剂PAA含量对(Ce0.80Gd0.20)O1.9(GDC)悬浮液粘度的影响和pH值对GDC颗粒Zeta电位的影响。采用固相质量分数为10%的GDC悬浮液等离子喷涂制备固体氧化物燃料电池电解质层。利用X射线衍射、扫描电镜和电子探针分别分析了喷涂前后GDC的相结构、电解质层微观组织及化学成分。研究结果表明:水悬浮液优化参数PAA质量分数为2.5%,pH=10;乙醇悬浮液优化参数为:PAA质量分数为2.0%,pH=10。在相同喷涂工艺下,乙醇悬浮液得到的电解质层结构更精细,由图像分析法得水和乙醇悬浮液得到电解质层的孔隙率分别为5.64%和1.25%。GDC喷涂前后没有相结构的变化,但是晶粒有长大,并且在喷涂过程中氧化铈发生烧损,水和乙醇悬浮液制备的电解质层中氧化铈分别烧损了15.8%和16.8%。 The effect of dispersant PAA loadings on the(Ce0.80Gd0.20)O1.9(GDC) suspension viscosities and the influence of pH value on the GDC particles Zeta potential were investigated.The two kinds of suspensions were prepared by using deionized water and alcohol as solvent.GDC electrolytic layers for SOFC were obtained by suspension plasma spraying with 10% solid content.X-ray diffractometry,scanning electron microscopy and electron probe microanalysis were used to analyse the phase structure,the cross-section microstructure of electrolytic layers and the change of GDC composition before and after suspension plasma spraying respectively.The results show that the optimal parameters of aqueous suspension is that PAA content of 2.5%,pH=10,and the optimal parameters of alcoholic suspension is that PAA content 2.0%,pH=10.With the same spray process conditions,the electrolytic layer obtained by alcoholic suspension is finer,the image analysis reveals that the porosities of electrolytic layers obtained from aqueous and alcoholic suspensions are 5.64% and 1.25% respectively.The phase structure of electrolytic layers didn't change compared to GDC original powder,but the grain grew,and the burning loss of ceria occured during plasma spraying,the cerium oxide of electrolytic layers produced by aqueous and alcoholic suspensions burned 15.8% and 16.8% respectively.
作者 董丽娟 李强
出处 《中国表面工程》 EI CAS CSCD 北大核心 2011年第5期32-37,共6页 China Surface Engineering
关键词 悬浮液 等离子喷涂 燃料电池 电解质 suspension plasma spraying fuel cell electrolyte
  • 相关文献

参考文献15

  • 1Hui R, Wang Z W, Kesler O, et al. Thermal plas- ma spraying for SOFCs: Applications, potential ad- vantages, and challenges [J]. Journal of Power Sources, 2007, 170(2): 308-323.
  • 2Hui R, Berghaus J O, Deces-Petit C, et al. High performance metal-supported solid oxide fuel cells fabricated by thermal spray[J]. Journal of Power Sources, 2009, 191(2):371-376.
  • 3Sun C W, Stimming U. Recent anode advances in solid oxide fuel cells [J]. Journal of Power Sources, 2007, 171(2) : 247-260.
  • 4史可顺.中温固体氧化物燃料电池电解质材料及其制备工艺的研究发展趋势[J].硅酸盐学报,2008,36(11):1676-1688. 被引量:10
  • 5Gitzhofer F, Boulos M, Heberlein J, et al. Inte- grated fabrication processes for solid oxide fuel cells using thermal plasma spray technology [J]. MRS Bulletin, 2000, 25(7): 38-42.
  • 6Waldbillig D, Kesler O. The effect of solids and dispersant loadings on the suspension viscosities and deposition rates of suspension plasma sprayed YSZ coatings [J]. Surface and Coatings Technolo- gy, 2009, 203(15): 2098-2101.
  • 7李成新,宁先进,李长久.等离子喷涂结合致密化工艺制备SOFC电解质层[J].电源技术,2004,28(9):565-568. 被引量:8
  • 8Kaβner H, Vaβen R, Stover D. Study on instant droplet and particle stages during suspension plas- ma spraying (SPS) [J]. Surface and Coatings Technology, 2008, 202 (18): 4355-4361.
  • 9Fauchais P, Etchart-Salas R, Rat V, et al. Pa- rameters controlling liquid plasma spraying: solu- tions, sols, or suspensions [J]. Journal of Thermal Spray Technology, 2008, 17(1) : 31-59.
  • 10Waldbillig D, Kesler O. Electrochemical testing of suspension plasma sprayed solid oxide fuel cell elec- trolytes [J]. Journal of Power Sources, 2011, 196 (13): 5423-5431.

二级参考文献57

共引文献24

同被引文献25

  • 1于庆河,周春根.等离子喷涂纳米TiO_2涂层及其光催化性能[J].北京航空航天大学学报,2007,33(5):608-612. 被引量:2
  • 2Pawlowski L. Suspension and solution thermal spray coatings [J]. Surface Coatings Technology, 2009,203 (19) : 2807-2829.
  • 3Xie L, Ma X, Jordan H, et al. Deposition mechanisms of thermal barrier coatings in the solution precursor plasma spray process [J]. Surface & Coatings Technology, 2004,177-178 : 103-107.
  • 4Gell M,Xie L,Jordan H, et al. Thermal barrier coatings made by the solution precursor plasma spray process[J]. Journal of Thermal Spray Technology, 2008,17(1) : 124-135.
  • 5Xie L, Jordan H, Padture P, et al. Phase and microstructural stability of solution precursor plasma sprayed thermal barrier coatings[J]. Materials Science and Engineering : A, 2004,381 ( 1- 2) :189- 195.
  • 6Kozerski S, Pawlowski L, J aworski R, et al. Two zones micro-structure of suspension plasma sprayed hydroxyapatite coatings [J]. Surface & Coatings Technology, 2010, 204 (9-10):1380- 1387.
  • 7VaBen R,Zeng Y,KaBner H,et al. Suspension plasma spraying of TiO2 for the manufacture of photovoltaic cells[J]. Surface & Coatings Technology, 2009,203 (15) : 2146-2149.
  • 8Chen D,Jordan H,Gell M. Porous TiO2 coating using the solu- tion precursor plasma spray process[J]. Surface & Coatings Technology, 2008,202 (24) :6113-6119.
  • 9Bordes M, Vicent M, Moreno A. Microstructure and photocata lytic activity of APS coatings obtained from different TiOz nan- opowders[J]. Surface & Coatings Technology, 2013,220 : 179- 186.
  • 10Metealfe C, Elisa L, Kesler O. Characterization of Ni-YSZ an- odes for solid oxide fuel cells fabricated by solution precursor plasma spraying with axial feedstock injection[J]. Journal of Power Sources, 2014,247 : 831-839.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部