期刊文献+

头眼协调运动控制仿生模型 被引量:2

Bionic Model for Coordinated Head-eye Motion Control
原文传递
导出
摘要 深入分析灵长类动物在注视点转移过程中眼球运动、头部运动及头眼协调运动的关系,将头眼协调运动的神经生理机制引入工程领域,改善机器人视觉系统的头眼协调问题。提出一种仿生型机器人头眼协调运动控制策略,将注视转移过程分为初始的快相和随后的慢相两个阶段。快相组合了高速眼球扫视运动(saccade)眼球运动和缓慢的头部运动,两者协调配合迅速切换注视点至新的目标;慢相通过前庭动眼反射(VOR),依靠头和眼的等量反向旋转运动维持目标稳定的同时,调整头部位置,使其朝向目标。建立了注视转移的仿生控制模型。仿真结果与生理学实验数据进行了对比分析,证明了所提控制策略与控制模型的可行性。 The relationships between eye movements and head movements of the primate during gaze shifts are analyzed in detail in the present paper. Applying the mechanisms of neurophysiology to engineering domain, we have im- proved the robot eye-head coordination. A bionic control strategy of coordinated head-eye motion was proposed. The processes of gaze shifts are composed of an initial fast phase followed by a slow phase. In the fast phase saceade eye movements and slow head movements were combined, which cooperate to bring gaze from an initial resting position toward the new target rapidly, while in the slow phase the gaze stability and target fixation were ensured by the action of the vestibulo-ocular reflex(VOR) where the eyes and head rotate by equal amplitudes in opposite directions. A bionic gaze control model was given. The simulation results confirmed the effectiveness of the model by comparing with the results of neurophysiology experiments.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2011年第5期895-900,共6页 Journal of Biomedical Engineering
基金 河南省自然科学基金资助项目(0611052900) 河南省重大科技攻关子项目资助(102101210100) 河南省教育厅自然科学研究计划项目资助(2009A410001) 河南省留学人员科技活动择优基金资助项目(豫人留学函[2007]17号)
关键词 仿生模型 注视点转移 头眼协调 眼球扫视运动 前庭动眼反射 Bionic model Gaze shift Head-eye coordination, Saceade Vestibulo-ocular reflex(VOR)
  • 相关文献

参考文献12

  • 1JESSICA L W, GALIANA H L. An internally switched model ofocular tracking with prediction[J]. IEEE Trans. on Neural Systems and Rehabilitation Engineering, 2005.02,13 (2) :186-193.
  • 2ANDREAS A K, ADON K M. Optimal control of gaze shifts [J]. The Journal of Neuroscience, 2009.06, 29(24):7723- 7730.
  • 3FREEDMAN E G, DAVID L S. Coordination of the eyes and heads Movement kinematies[J]. Exp Brain Res, 2000, 131: 22-32.
  • 4ZHANG X L, WAKAMATSU H. Mathematical model for binocular movement mechanis m and construction of eye axes control system[J]. Journal of the Robotics Society of Japan, 2002.01,20(1) : 89-97.
  • 5ZHANG X L, WAKAMATSU H. A unified adaptive oculomotor control model[J]. International Journal of Adaptive Control and Signal Processing, 2001.10, 15(7) :697-713.
  • 6MAO X B, CHEN T J. A visual tracking control strategy based on human vision physiological mechanisms [C]. Proceedings of IEEE 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 2009(4) : 870- 875.
  • 7顾立忠,苏剑波.仿人机器人的头眼协调运动控制研究[J].机器人,2008,30(2):165-170. 被引量:5
  • 8毛晓波,陈铁军.基于人类视觉特性的机器视觉系统[J].仪器仪表学报,2010,31(4):832-837. 被引量:21
  • 9FREEDMAN E G. Interactions between eye and head control signals can account for movement kinermitics[J]. Biological Cybernetics, 2001,84:453-462.
  • 10FREEDMAN E G. Coordination of the eyes and head during visual orienting[J]. Exp Brain Res, 2008. 10, 190(4):369- 387.

二级参考文献28

  • 1邹海荣,龚振邦,罗均.仿生眼的研究现状与发展趋势[J].机器人,2005,27(5):469-474. 被引量:18
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:253
  • 3LEE W J,GALIANA H L.An internally switched model of ocular tracking with prediction[J].IEEE Trans.on Neural systems and Rehabilitation Engineering,2005,13(2):186-193.
  • 4MAO X B,CHEN T J.A visual tracking control strategy based on human vision physiological mechanisms[C].Proceedings of IEEE 9th International Conference on Electronic Measurement & Instruments,Beijing,China,2009(4):870-875.
  • 5WANG J,ZHA H,CIPOLLA R.Coarse-to-fine vision-based localization by indexing scale-invariant features[J].IEEE Trans.on Systems,Man,and Cybernetics,2006,36(2):413-422.
  • 6LIU H,PI W,ZHA H.Motion detection for multiple moving targets by using an omnidirectional camera[C].Proc.IEEE.Intl.Conf.on Robotics,Intelligent Systems and Signal Processing,Changsha,China,2003(1):422-426.
  • 7王正 刘瑞华.基于PTZ摄像机的运动目标检测算法.测控技术,2006,25:38-41.
  • 8XIE S,LUO J,GONG Z,et al.Biomimetic control of pan-tilt-zoom camera for visual tracking based-on an autonomous helicopter[C].Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems San Diego,CA,USA,Oct 29-Nov 2,2007:2138-2143.
  • 9ZOU H,GONG Z,XIE S,et al.Modeling of the UAV on-board pan-tilt control system based on biomimetic eye[C].Proceedings of IEEE International Conference on Mechatronics and Automation.Luoyang,China,June,2006:893-897.
  • 10福岛邦彦著 马万禄译.视觉生理与仿生学[M].北京:科学出版社,1980..

共引文献24

同被引文献29

  • 1罗均,周玉美,胡钜奇,李恒宇,谢少荣.基于模糊PID的仿生机械云台系统研究(英文)[J].新型工业化,2013,2(10):16-22. 被引量:17
  • 2黄素媚,肖南峰.仿人形机器人两眼的运动模型和控制方法研究[J].系统仿真学报,2005,17(9):2065-2069. 被引量:9
  • 3邹海荣,龚振邦,谢少荣.仿生型机器人眼球运动控制系统建模[J].机器人,2007,29(4):342-347. 被引量:8
  • 4Zee D S, Fitzgibbon E J, Optican L M. Saccade-vergence interactions in huans [J]. Journal of Neurophysiology (S0022-3077), 1992, 68(5): 1624-1641.
  • 5Cullen K E, Van Horn M R. The neural control of fast vs. slow vergence eye movements [J]. European Journal of Neuroscience (S0953-816X), 2011, 33(11): 2147-2154.
  • 6Hung G K, Ciuffreda K J. Models of the Visual System [M]. New York, USA: Springer US, 2002:431-462.
  • 7Daemi M, Crawford D. Theoretical understanding of three-dimensional head-free gaze-shift [J]. BMC Neuroscience (S1471-2202), 2013, 15(S1): 1-2.
  • 8Nakagawa A, Sukigara M. Variable coordination of eye and head movements during the early development of attention: A longitudinal study of infants aged 12-36 months [J]. Infant Behavior and Development (S0163-6383), 2013, 36(4): 517-525.
  • 9Saglam M, Glasauer S, Lehnen N. Vestibular and cerebellar contribution to gaze optimality [J]. Brain A Journal of Neurology (S0006-8950), 2014, 137(4): 1080-1094.
  • 10Cullen K E, Brooks J X. Consulting the vestibular system is simply a must if you want to optimize gaze shifts [J]. Brain (S0006-8950), 2014, 137(4): 978-980.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部