期刊文献+

生物医学数据的可视化图形特征提取方法 被引量:1

Extraction Method of the Visual Graphical Feature from Biomedical Data
原文传递
导出
摘要 从领域问题中提取的原始特征进行某种矢量空间变换如主成分分析(PCA)、线性判别分析(LDA)、独立分量分析(ICA)和基于核的方法可能会改进分类器分类性能。基于多元数据的星点图表示方法,提出了一种新的可视化的图形特征提取方法———星点图重心图形特征。对星点图图表示中存在的特征排序影响图表示的问题进行了研究,提出了基于改进的遗传算法(GA)的特征排序。乳腺癌和糖尿病等生物医学数据集在遗传算法特征排序下的重心图形特征的分类结果都超过了公认的模式识别网站上的报道,也优于传统的矢量空间的特征提取方法下得到的特征的分类性能。 The vector space transformations such as principal component analysis(PCA),linear discriminant analysis(LDA),independent component analysis(ICA)or the kernel-based methods may be applied on the extracted feature from the field,which could improve the classification performance.A barycentre graphical feature extraction method of the star plot was proposed in the present study based on the graphical representation of multi-dimensional data.The feature order question of the graphical representation methods affecting the star plot was investigated and the feature order method was proposed based on the improved genetic algorithm(GA).For some biomedical datasets,such as breast cancer and diabetes,the obtained classification error of baryeentre graphical feature of star plot in the GA based optimal feature order is very promising compared to the previously reported classification methods,and is superior to that of traditional feature extraction method.
作者 李静 王金甲 洪文学 Li Jing;Wang Jinjia;Hong Wenxue(College of Science,Yanshan University,Qinhuangdao 066004,China;College of Electrical Engineering,Yanshan University,Qinhuangdao 066004.China;College of Information Science and Engineer,Yanshan University,Qinhuangdao 066004,China)
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2011年第5期916-921,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(60504035,61074195) 河北省自然科学基金资助项目(F2010001281,A2010001124)
关键词 特征提取 可视化 特征排序 遗传算法 多元数据图表示 星点图 Feature extraction Visualization Feature order Genetic algorithm(GA) Graphical representation ofmultivariate datat Star plot
  • 相关文献

参考文献15

  • 1THEODORIDIS S, KOUTROUMBAS K. Pattern recognition [M]. 2nd edition. New York, Academic Press, 2003,1-30.
  • 2JOLLIFFE I J. Principal component analysis [M]. New York, Springer, 1986:1-20.
  • 3CHEONG H P, HAESUN P. A comparison of generalized linear discriminant analysis algorithms [J]. Pattern Recognition, 2008, 41 (1):1083-1097.
  • 4COMON P. Independent component analysis, a new concept? [J]. Signal Process, 1994, 36 (3):287-314.
  • 5SCHOLKOPF B, SMOLA A J, MULLER K R. Kernel principal component analysis [C]. Artificial Neural Networks- ICANN'97, Berlin, 1997:583-588.
  • 6BAUDAT G, ANOUAR F. Generalized discriminant analysis using a kernel approach [J]. Neural Computation, 2000, 13 (10):2385-2404.
  • 7BACH F R, JORDAN M I. Kernel independent oomponent analysis [J]. Journal of Machine Learning Research, 2002, 3(1),1-48.
  • 8ROBERT P W D, PERKALSKA E. The science of pattern recognition. Achievements and Perspectives [J]. Studies in Computational Intelligence, 2007, 63 (1) : 221-259.
  • 9PERKALSKA E, ROBERT P W D, PAVEL P. Prototype selection for dissimilarity-based classifiers [J]. Pattern Recognition, 2006, 39(2): 189-208.
  • 10高惠璇,应用多元统计分[M].北京:北京大学出版社,2005:1-30.

二级参考文献10

  • 1Gang Liu,Holger Seiler,Ai Wen,Troy Zars,Kei Ito,Reinhard Wolf,Martin Heisenberg,Li Liu.Distinct memory traces for two visual features in the Drosophila brain[J].中国生物学文摘,2006,20(3):55-55. 被引量:17
  • 2XU R,DONALD W Ⅱ.Survey of clustering algorithms[J].IEEE Transactions on Neural network,2005,16(3):645-678.
  • 3HERMAN C.The use of faces to represent points in K-dimensional space graphically[J].Journal of the American Statistical Association,1973,68(342):361-368.
  • 4ASTEL K.Classification of drinking water samples using the Chernoff's faces visualization approach[J].Polish Journal of Environmental Studies,2006,15(5):691-697.
  • 5SU C P,GUPTA M,WHITE P.Multivariate sensory characteristics of low and ultra-low linoleic soybean oils displayed as faces[J].Journal of the American Oil Chemists' Society,2003,80(12):1231-1235.
  • 6SAXENA P C,NAVANEETHAM K.Comparison of Chernoff -type face and non-graphical methods for clustering multivariate observations[J].Computational Statistics & Data Analysis,1993,15(1):63-79.
  • 7HAIR J E,ANDERSON R E.Multivariate data analysis[M].Prentice Hall,1998.
  • 8http://www.ics.uci.edu/mlearn/MLRepository.html[EB/OL].
  • 9DARINKA B V,ZDENKA C K.Multivariate data analysis in classification of vegetable oils characterized by the content of fatty acids[J].Chemometrics and Intelligent Laboratory Systems,2005,75(1):31-43.
  • 10王金甲,洪文学,李昕.一种K-均值脸谱图聚类新算法[J].仪器仪表学报,2007,28(10):1916-1920. 被引量:11

共引文献18

同被引文献14

  • 1曹文明,冯浩.仿生模式识别与信号处理的几何代数方法[M].北京:科学出版社,2010:20-36.
  • 2YANG X R, CHANG-CLAUDE J, GOODE E L, et al. As- sociations of breast cancer risk factors with tumor subtypes: a pooled analysis from the breast cancer association consortium studies [J].J Natl Cancer Inst, 2011, 103(3) : 250-263.
  • 3THEODORIDIS S, KOUTROUMBAS K. Pattern recogni- tion[M]. 2nd ed. New York: Academic Press, 2003: 1-30.
  • 4DUIN R P W, PEKALSKA E. The science of pattern recog- nition. Achievements and perspectives [M]//DUCH W, MANDZIUK J. Challenges for computational intelligence. Berlin Heidelberg: Springer Berlin Heidelberg, 2007, 63: 221-259.
  • 5BAYRO-CORROCHANO E J, ARANA-DANIEI. N. Clif- ford support vector machines for classification, regression, and recurrence [J].IEEE Trans Neural Netw, 2010, 21 (11): 1731-1746.
  • 6DAS S, SUGANTHAN P N. Differential evolution: a survey of the state-of-the-art [J]. IEEE Trans Evolut Comput, 2011, 15(1): 4-31.
  • 7STOEAN R, STOEAN C. Modeling medical decision making by support vector machines, explaining by rules of evolution- ary algorithms with feature selection [J]. Expert Syst Appl, 2013, 40(7): 2677-2686.
  • 8CHANG P C, LIN J J, LIU Chenhao. An attribute weight assignment and particle swarm optimization algorithm for medical database classifications [J]. Comput Methods Pro- grams Biomed, 2012, 107(3): 382-392.
  • 9CHEN T C, HSU T C. A GAs based approach for mining breast cancer pattern [J]. Expert Syst Appl, 2006, 30(4):674-681.
  • 10CHEN Hui-ling, YANG Bo, LIU Jie, et al. A support vector machine classifier with rough set-based feature selection for breast Cancer diagnosis [J]. Expert Syst Appl, 2011, 38(7) : 9014-9022.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部