期刊文献+

基于BP神经网络的SCR连铸连轧法生产Cu合金电车线坯的成分与性能关系预测 被引量:5

Prediction of Relationship Between Composition and Performance of Copper Alloy Wire Blanks Made by SCR Continuous Casting and Rolling Process Based on BP Neural Network Progress on BP Neural Networks
下载PDF
导出
摘要 对SCR连铸连轧铜合金电车线坯的成分和性能进行测定,以其结果作为BP神经网络模拟样本。结果表明:Cu合金线坯中Cu-Ag的电学性能优于Cu-Sn,而力学性能较差;所选用的BP神经网络模型能预测Cu合金的成分和性能的关系,抗拉强度预测误差低于10%;电阻率预测误差低于5%,达到了预期目标。 The composition and performance of copper alloys made by SCR continuous casting and rolling process were measured,and the the results were considered as a sample of BP neural network.The simulation results show that the electrical propertie of Cu-Ag is better than that of Cu-Sn,but Cu-Ag has poor mechanical properties.Choosing BP neural network model can predict the relationship between the composition and performance of Cu alloys,and the prediction error of the tensile strength is less than 10%;the prediction error of the resistive is less than 5%.The model can meet the expected goals.
作者 周朝萱
机构地区 攀枝花学院
出处 《热加工工艺》 CSCD 北大核心 2011年第19期49-51,54,共4页 Hot Working Technology
关键词 SCR连铸连轧 铜合金 组成 性能 BP神经网络 SCR continuous casting and rolling process copper alloy composition performance BP neural network
  • 相关文献

参考文献4

二级参考文献14

  • 1周俊虎,李艳昌,程军,周志军,李珊珊,刘建忠,岑可法.人工神经网络预测煤炭成浆浓度的研究[J].燃料化学学报,2005,33(6):666-670. 被引量:9
  • 2张晓,吴诗勇,顾菁,吴幼青,高晋生.神经网络预测煤焦高温气化反应速率研究[J].煤炭转化,2007,30(2):22-27. 被引量:3
  • 3CB/T20509-2006,电力机车接触材料用铜及铜合金线坯.
  • 4中国机械工程学会铸造专业学会.铸造手册铸造非铁合金.机械工业出版社.1999年5月第一版.
  • 5CARSKY M, KUWORNOO D K. Neural network modeling of coal pyrolysis[J]. Fuel, 2001, 80(7) : 1021-1027.
  • 6ZHOU H, QIAN X P, CEN K F, FAN J R. Optimizing pulverized coal combustion performance based on ANN and GA [J]. Fuel Process Technol, 2003, 85(2/3) : 113-124.
  • 7JAVIER P, INMACULADA A, ENRIQUE T. Development of an engineering system for unburned carbon prediction [J]. Fuel, 2009, 88 ( 1 ) : 187-194.
  • 8WANG J P, XU L, GUO J G, DING L. Modeling of battery for electric vehicles using a stochastic fuzzy neural network[J]. Proc IMechE Part D : J Automobile Eng, 2009, 223 ( 1 ) : 27-35.
  • 9徐秉增,张百灵.神经网络理论及应用[M].广州:华南理工大学出版社,1996.
  • 10闻新,周露,李翔等.MATLAB神经网络仿真与应用[M].北京:科学出版社,1989:276-284.

共引文献15

同被引文献26

  • 1唐广波,刘正东,康永林,王巍,张丕军.热轧带钢传热模拟及变形区换热系数的确定[J].钢铁,2006,41(5):36-40. 被引量:19
  • 2杨瑞成,丁旭,等.机械工程材料[M].重庆:重庆大学出版社,2004.
  • 3F.Ernst, Y.Cao,G.M.michal,A.H.Heuer.Carbideprecipitation in austenitic stainlesssteel carburized at lowtemperature[J]. Journal of Acta Materialia,2007, Volume55, Issue6, Pages 1895—1906.
  • 4M.Tsujikawa,D.Yoshida.Surface material design of316 stainlesssteel by combination of low temperaturecarburizing and nitriding[J]. Joural of Surface and CoatingsTechnology, Volume 200, Issues 1-4,1 October 2005,Pages 507-511.
  • 5闻新,周露,李翔.Mmlab神经网络仿真与应用[M].北京:科学出版社.2003:136-143.
  • 6周开利,康耀红.神经网络模型及其MATLAB仿真程穿设计[M].北京:清华大学出版社,2005:69-100.
  • 7Pérez A,Corral R L,Fuentes R. Computer simulation of the thermal behavior of a work roll during hot rolling of steel strip[J].Journal of Materials Processing Technology,2004,(153):894-899.
  • 8金兹伯格VB;姜名东;王国栋.高精度板带材轧制理论与实践[M]北京:冶金工业出版社,2000.
  • 9乔瑞;王长松;盛佳伟.板材轧制过程的三维有限元分析[J]冶金自动化,2005((增刊):230-233.
  • 10刘劲松;张士宏;肖寒.MSC.MARC在材料加工工程中的应用MARC在材料加工工程中的应用[M].北京:中国水利水电出版社,2010.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部