期刊文献+

自适应正则化超分辨率磁共振图像重建 被引量:4

Adaptive regularized super-resolution reconstruction for magnetic resonance images
下载PDF
导出
摘要 目的为提高磁共振(MR)图像的分辨率和信噪比,本文提出一种自适应正则化的重建算法,从四幅分别存在亚像素级移动的低分辨MR图像实现超分辨率图像重建;本文提出的新正则化参数使得代价函数在定义域内呈局部凸性,同时在正则化参数中引入图像先验信息,以加强高频细节的恢复。结果表明,新算法能够有效的实现低分辨率MR图像的重建。 Objective To increase the resolution and signal-to-noise ratio(SNR) of magnetic resonance(MR) images,an adaptively regularized super-resolution reconstruction algorithm was proposed and applied to acquire high resolution MR images from 4 subpixel-shifted low resolution images on the same anatomical slice.The new regularization parameter,which allowed the cost function of the new algorithm to be locally convex within the definition region,was introduced by the piori information to enhance detail restoration of the image with a high frequency.The experiment results proved that the proposed algorithm was superior to other counterparts in achieving the reconstruction of low-resolution MR images.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2011年第10期1705-1708,共4页 Journal of Southern Medical University
基金 国家973重点基础研究发展规划(2003CB716102) 国家自然科学基金重点项目(30730036)~~
关键词 磁共振成像 自适应正则化 超分辨率重建 magnetic resonance imaging adaptive regularization super-resolution reconstruction
  • 相关文献

参考文献7

  • 1Kang MG, Katsaggelos AK. General choice of the regularization functional in regularized image restoration [J]. IEEE Trans Image Process, 1995, 4(5): 594-602.
  • 2Hardie RC, Bamard KJ, Armstrong EE. Joint MAP registration and high-resolution image estimation using a sequence of under-sampled images [J]. IEEE Trans Image Process, 1997, 6(12): 1621-33.
  • 3Lee ES, Kang MG. Regularized adaptive high-resolution image reconstruction considering inaccurate sub-pixel registration [J]. IEEE Trans Image Process, 2003, 12(7): 826-37.
  • 4He H, Kondi LP. An image super-resolution algorithm for different error levels per frame[J]. IEEE Trans Image Process, 2006, 15(3): 592-603.
  • 5He H, Kondi LP. Resolution enhancement of video sequences with simultaneous estimation of the regularization parameter [J]. J Electron Imaging, 2004, 13(7): 586-96.
  • 6Park SC, Park MK, Kang MG. Super-resolution image reconstruction: a technical overview[J]. IEEE Signal Proc Mag, 2003, 20(3): 21-36.
  • 7Kang MG, Katsaggelos AK. Simultaneous multichannel image restoration and estimation of the regularization parameters [J]. IEEE Trans Image Process, 1997, 6(5): 774-8.

同被引文献42

  • 1Milanfar P. Super-resolution Imaging[M]. New York, USA: CRC Press, 2010.
  • 2Tsai R Y, Huang T S. Multiple-frame Image Restoration and Registration[C]//Advances in Computer Vision and Image Processing. London, UK: JAI Press Inc., 1984: 317-339.
  • 3Gevrekci M, Gunturk B K, Altunbasak Y. POCS-based Restoration of Bayer-sampled Image Sequences[C]//Proceedings of IEEE Conference on Acoustics, Speech and Signal Processing. Honolulu, USA: IEEE Press, 2007: 753-756.
  • 4Yang Jianchao, Wright J, Huang T S, et al. Image Super-resolution via Sparse Representation[J]. IEEE Transactions on ImageProcessing, 2010, 19(11): 2861-2873.
  • 5Farsiu Y S, Robinson D, Elad M, et al. Fast and Robust Multi-frame Super Resolution[J]. IEEE Transactions on Image Processing, 2004, 13(10): 1327-1344.
  • 6路庆春.正则化超分辨率图像重建算法研究[D].合肥:中国科学技术大学,20lo.
  • 7Hartley R, Zisserman A. Multiple View Geometry in Comptiter Vision[M]. 2nd ed. Cambridge, UK: Cambridge University Press, 2004.
  • 8Song Huihui, Zhang Lei, Wang Peikang, et al. An Adaptive LI-L2 Hybrid Error Model to Super-resolution[C]//Proceedings of IEEE International Conference on Image Processing. Hong Kong, China: IEEE Press, 2010: 2821-2824.
  • 9徐启飞,陈武凡,颜刚,马建华.PET序列图像超分辨率优质重建算法[J].计算机工程与应用,2007,43(31):71-73. 被引量:3
  • 10Fang Qiu,Xu Yi, Wang Ci, et al. Noisy Image Super- resolution with Sparse Mixing Estimators I C ~// Proceedings of the 4th International Congress on Image and Signal Processing. Washington D. C., USA: IEEE Press ,2011 : 1081-1085.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部