期刊文献+

顶头孢霉遗传育种研究进展 被引量:4

Research progress on strain improvement of Acremonium chrysogenum by genetic engineering
下载PDF
导出
摘要 顶头孢霉是一类重要的工业微生物,其发酵产物头孢菌素C可用来生产7-ACA,而后者是临床常用抗感染药物头孢类抗生素的重要中间体。头孢菌素C的发酵水平决定了其下游头孢类抗生素的生产水平、产品质量及价格,因此对顶头孢霉的菌种选育工作显得尤其迫切。随着分子生物学的发展,基因工程分子改造在遗传育种领域发挥着越来越重要的作用。文章综述了对头孢菌素C的生物合成以及调控的研究进展,并将国内外对顶头孢霉进行遗传育种的结果进行了归纳总结,提出了可以从提高头孢菌素C发酵水平、延伸代谢途径等不同方面对头孢菌素C生物合成及调控基因,包括外源基因的导入和表达进行改造优化,并对进一步的研究目标进行了展望,认为可以结合比较蛋白质组和基因组改组使遗传育种所获得的工程菌尽快进入产业化。 Acremonium chrysogenum,cephalosporin C(CPC) producing strain,is an important industrial microorganism.CPC is used to produce 7-ACA,a major intermediate for manufacturing of many first-line anti-infectious cepha-losporin-antibiotics.The fermentation level of CPC determines the production,quality and cost of its downstream products.Therefore,it is necessary to develop the strains of A.chrysogenum.Along with the development of molecular biology,ge-netic manipulation technique is becoming more and more important in the field of molecular breeding.This paper reviews the latest research progresses on CPC biosynthesis and its regulation.Genetic manipulations of A.chrysogenum were sum-marized and concluded.We suggested that strain improvement of A.chrysogenum by means of induction and expression of biosynthetic and regulatory genes,as well as exogenous genes,and further optimization could be applied to different aspects including CPC production enhancement and metabolic pathway elongation,etc.Future direction of this field is also pro-posed.We believed that incorporation of comparative proteomics and genomic shuffling with molecular breeding could lead the achievements close to industry promptly.
出处 《遗传》 CAS CSCD 北大核心 2011年第10期1079-1086,共8页 Hereditas(Beijing)
基金 科技部“十二五重大新药创制”项目(编号:2011zx09203-001-06)资助
关键词 顶头孢霉 分子育种 菌种选育 头孢菌素C 基因工程 Acremonium chrysogenum moleculear breeding strain improvement cephalosporin C genetic engineering
  • 相关文献

参考文献46

  • 1Ellaiah P,Adinarayana K,Chand GM,Subramanyam GS,Srinivasulu B.Strain improvement studies for cepha-losporin C production by Cephalosporium acremonium.Pharmazie,2002,57(7): 489-490.
  • 2Ellaiah P,Kumar JP,Saisha V,Sumitra JJ,Vaishali P.Strain improvement studies on production of cepha-losporin C from Acremonium chrysogenum ATCC 48272.Hindustan Antibiot Bull,2003,45-46(1-4): 11-15.
  • 3Lee MS,Lim JS,Kim CH,Oh KK,Yang DR,Kim SW.Enhancement of cephalosporin C production by cultiva-tion of Cephalosporium acremonium M25 using a mixture of inocula.Lett Appl Microbiol,2001,32(6): 402-406.
  • 4Gutiérrez S,Díez B,Montenegro E,Martin JF.Characterization of the Cephalosporium acremonium pcbAB gene encoding alpha-aminoadipyl-cysteinyl-valine synthetase,a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains.J Bacteriol,1991,173(7): 2354-2365.
  • 5Martín JF,Ullán RV,Casqueiro J.Novel genes involved in cephalosporin biosynthesis: the three-component isopeni-cillin N epimerase system.Adv Biochem Eng Biotechnol,2004,88: 91-109.
  • 6Gutiérrez S,Velasco J,Fernandez FJ,Martin JF.The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetyl-cephalosporin C acetyl-transferase closely related to homoserine O-acetyltransferase.J Bacteriol,1992,174(9): 3056-3064.
  • 7Lejon S,Ellis J,Valegard K.The last step in cephalosporin C formation revealed: crystal structures of deacetylcepha-losporin C acetyltransferase from Acremonium chrysogenum in complexes with reaction intermediates.J Mol Biol,2008,377(3): 935-944.
  • 8Brakhage AA,Th?n M,Spr?te P,Scharf DH,Al-Abdallah Q,Wolke SM,Hortschansky P.Aspects on evolution of fungal β-lactam biosynthesis gene clusters and recruitment of transacting factors.Phytochemistry,2009,70(15-16): 1801-1811.
  • 9Dreyer J,Eichhorn H,Friedlin E,Kürnsteiner H,Kück U.A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum.Appl Environ Microbiol,2007,73(10): 3412-3422.
  • 10Ullán RV,Teijeira F,Guerra SM,Vaca I,Martín JF.Characterization of a novel peroxisome membrane protein essential for conversion of isopenicillin N into cepha-losporin C.Biochem J,2010,432(2): 227-236.

二级参考文献88

  • 1周小玲,沈微,饶志明,王正祥,诸葛健.一种快速提取真菌染色体DNA的方法[J].微生物学通报,2004,31(4):89-92. 被引量:97
  • 2胡之璧.透明颤菌血红蛋白研究现状及其在中药中的应用展望[J].中西医结合学报,2005,3(5):337-341. 被引量:4
  • 3柳志强,孙志浩,郑璞,冷泳,钱嘉南.D-泛解酸内酯水解酶的定向进化[J].生物工程学报,2005,21(5):773-781. 被引量:8
  • 4陈丹,袁宁,胡又佳,朱春宝,赵文杰,朱宝泉.顶头孢霉乙酰转移酶基因的克隆、表达和活性研究[J].中国抗生素杂志,2006,31(7):395-399. 被引量:3
  • 5Fechtig B, Peter H, Bickel H, et al. Concerning the preparation of 7-amino-cephalosporanic acid [J]. Helv Chim Acta, 1968, 51 (5) : 1108-1119.
  • 6Conlon HD, Baqai J, Baker K, et al. Two-step immobilized enzyme conversion of cephalosporin C to 7-aminocephalosporanic acid [J]. Biotechnol Bioeng, 1995, 46(6) : 510-513.
  • 7Fritz-Wolf K, Koller KP, Lange G, et al. Structure-based prediction of modifications in glutarylamidase to allow single-step enzymatic production of 7-aminocephalosporanic acid from cephalosporin C [J]. Protein Sci, 2002, 11 (1) : 92-103.
  • 8Oh B, Kim M, Yoon J, et al. Deacylation activity of cephalosporin acylase to cephalosporin C is improved by changing the side-chain conformations of active-site residues IJ]. Biochem Biophys Res Commun, 2003, 310 (1) : 19-27.
  • 9Kim Y, Yoon K, Khang Y, et al. The 2.0 A crystal structure of cephalosporin acylase[J]. Structure, 2000, 8(10): 1059-1068.
  • 10Oh B, Kim K, Park J, et al. Modifying the substrate specificity of penicillin G acylase to cephalosporin acylase by mutating active-site residues [J]. Biochem Biophys Res Commun, 2004, 319 (2) : 486-492.

共引文献19

同被引文献59

  • 1周小玲,沈微,饶志明,王正祥,诸葛健.一种快速提取真菌染色体DNA的方法[J].微生物学通报,2004,31(4):89-92. 被引量:97
  • 2唐敦武,何建勇.顶头孢霉的去代谢产物反馈调节选育模型的建立与应用[J].沈阳药科大学学报,2005,22(4):306-309. 被引量:4
  • 3Skatrud P L, Tietz A J, Ingolia T D, et al. Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Nat Biotech, 1989,7 (5) :477-485.
  • 4Gutierrez S, Velasco J, Marcos A T, et al. Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Appl Microbial Biotechnol, 1997. 48 (5) :606-614.
  • 5Ull(m R, Liu G, Casqueiro J,et al. The cetT gene of Acremonium chrysogenum C10 encodes a putative muhidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genomics, 2002,267 (5) :673-683.
  • 6DeModena J A, Gutierrez S, Velasco J, et al. The production of cephalosporin C by Acreraonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. Biotechnology, 1993,11 (8) :926-929.
  • 7Tollnick C, Seidel G, Beyer M, et al. Investigations of the production of cephalosporin C by Acremonium chrysogenum. Adv Biochem Eng Biotechnol, 2004,86 : 1-45.
  • 8Martin JF.Alpha-aminoadipyl-cysteinyl-valine synthetases in beta-lactam producing organisms.From Abraham's discoveries to novel concepts of non-ribosomal peptide synthesis[J].JAntibiot (Tokyo),2000,53 (10):1008-1021.
  • 9Gutiérrez S,Fierro F,Casqueiro J,et al.Gene organization and plasticity of the beta-lactam genes in different filamentous fungi[J].Antonie Van Leeuwenhoek,1999,75(1-2):81-94.
  • 10Schmitt EK,Kück U.The fungal CPCR1 protein,which binds specifically to beta-lactam biosynthesis genes,is related to human regulatory factor X transcription factors[J].J Biol Chem,2000,275 (13):9348-9357.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部