期刊文献+

一种ρ-支配轮廓查询的高效处理算法 被引量:5

An Efficient Processing Algorithm for ρ-Dominant Skyline Query
下载PDF
导出
摘要 近年来,作为重要的多目标决策手段的轮廓查询逐渐得到学术界的重视,相继提出了基于不同支配关系的多种轮廓变体查询.首先,通过对实际应用需求进行分析,提出了基于元组对应数值间比例值大小的ρ-支配关系的定义,进而提出了ρ-支配轮廓查询的概念.其次,对ρ-支配轮廓的基本性质进行了细致而深入的分析,在此基础上,提出了基于分支定界的ρ-支配轮廓查询算法(Branch and Boundρ-Dominant Skyline Algorithm,BBDS),避免了对R-树索引的多次访问,从而提高了ρ-支配轮廓查询的执行效率.最后,通过大量的仿真实验对ρ-支配轮廓查询的语义进行分析,并对BBDS算法的性能进行验证.实验结果表明,ρ-支配轮廓查询是轮廓查询语义的扩展和补充,而提出的BBDS算法则是求解ρ-支配轮廓查询的高效算法. In recent years,as an important operator for multi-decision making,skyline query has attracted much attention from the academia gradually,and a variety of skyline variants based on different dominance relationships have been proposed successively by the database researchers.In this paper,firstly,through making the analysis of practical applications' requirements,the ρ-dominance relationship based on the ratio of corresponding values between the tuples is defined,and then the concept of ρ-dominant skyline query based on the ρ-dominance relationship is proposed.Next,by making a detailed and in-depth analysis of ρ-dominance's basic properties,a novel algorithm,named Branch and Bound ρ-Dominant Skyline Algorithm(BBDS),is developed.The BBDS algorithm avoids visiting R-tree index too many times,which can improve the ρ-dominant skyline query implementation efficiency greatly.Finally,through a large number of simulation experiments,the semantic of the ρ-dominant skyline query is analyzed,and meanwhile the performance of BBDS algorithm is verified by the simulation experiments.The simulation experimental results show that ρ-dominant skyline query based on ρ-dominance relationship is a new extension and complement of the traditional skyline query semantic and the BBDS algorithm proposed in this paper is proved to be a highly effective algorithm for solving ρ-dominant skyline queries.
出处 《计算机学报》 EI CSCD 北大核心 2011年第10期1876-1884,共9页 Chinese Journal of Computers
基金 国家自然科学基金重点项目(60933001) 国家自然科学基金面上项目(61073063) 国家杰出青年科学基金项目(61025007) 中央高校基本科研业务费专项资金(N090304007)资助~~
关键词 轮廓查询 轮廓变体 ρ-支配关系 ρ-支配轮廓 分支定界 skyline query skyline variants ρ-dominance ρ-dominant skyline branch and bound
  • 相关文献

参考文献15

  • 1Borzsonyi S, Kossmann D, Stocker K. The skyline operator//Proceedings of the 17th International Conference on Data Engineering. Heidelberg, Germany, 2001: 421-430.
  • 2魏小娟,杨婧,李翠平,陈红.Skyline查询处理[J].软件学报,2008,19(6):1386-1400. 被引量:35
  • 3Balke W-T, Guntzer U. Multi-objective query processing for database systems//Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, Canada, 2004:936-947.
  • 4Chan C-Y, Jagadish H, Tan K-L et al. Finding k-dominant skylines in high dimensional spaee//Proceedings of the ACM SIGMOD International Conference on Management of Data Chicago. Illinois, USA, 2006.. 503-514.
  • 5Chan C-Y, Jagadish H, Tan K Let al. On high dimensional skylines//Proceedings of the 10th International Conference on Extending Database Technology. Munich, Germany, 2006:478-495.
  • 6Lee J, You G, Hwang S. Personalized top-k skyline queries in high-dimensional space. Information Systems, 2009, 34(1) :45-61.
  • 7Sharifzadeh M, Shahabi C. The spatial skyline queries//Proceedings of the 32rtd International Conference on Very Large Data Bases. Seoul, Korea, 2006:751 762.
  • 8Lin X, Yuan Y, Zhang Q et al. Selecting stars: The k-most representative skyline operator//Proceedings of the 23rd International Conference on Data Engineering. Istanbul, Turkey, 2007: 86-95.
  • 9Tao Y, Ding L, Lin X et al. Distance-based representative skyline//Proceedings of the 25th International Conference on Data Engineering. Shanghai, China, 2009: 892-903.
  • 10Papadias D, Tao Y, Fu Get al. An optimal progressive algorithm for skyline queries//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. San Diego, California, USA, 2003:467-478.

二级参考文献26

  • 1Borzsonyi S, Kossmann D, Stocker K. The skyline operator. In: Proc. of the 17th Int'l Conf. on Data Engineering. Heidelberg, IEEE Computer Society Press, 2001. 421-430. http://www.dbis.ethz.ch/research/publications/38.pdf
  • 2Balke WT, Guntzer U. Multi-Objective query processing for database systems. In: Proc. of the Internet Conf. on Very Large Data Bases (VLDB 2004). 2004. 936- 947. http://www.vldb.org/conf/2004/RS24P1 .PDF
  • 3Kung HT, Luccio F, Preparata FP. On finding the maxima of a set of vectors. Journal of the ACM, 1975,22(4):469-476. http://portal.acm.org/citation.cfm?id=321910&dl=ACM&coll=portal
  • 4Bentley JL, Kung HT, Schkolnick M, Thompson CD. On the average number of maxima in a set of vectors and applications. Journal of the ACM, 1978,25(4):536-543. http://portal.acm.org/citation.cfm?id=322092.322095
  • 5Yuan Y, Lin X, Liu Q, Wang W, Yu JX, Zhang Q. Efficient computation of the skyline cube. In: Proc. of the 31 st Int'l Conf. on Very Large Databases. ACM, 2005.241-252. http://www.vldb2005.org/program/paper/tue/p241-yuan.pdf
  • 6Li CP, Ooi BC, Tung AKH, Wang S. DADA: A data cube for dominant relationship analysis. In: Proc. of the ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2006). 2006. http://www.comp.nus.edu.sg/-ooibc/dadacube.pdf
  • 7Chan CY, Jagadish HV, Tan KL, Tung AKH, Zhang ZJ. Finding k-dominant skylines in high dimensional space. In: Proc. of the ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2006). Chicago, 2006. 503-514. http://www.eecs.umich.edu/ db/files/k_dominant.pdf
  • 8Freitas AA. A critical review of multi-objective optimization in data mining. A Position Paper: ACM SIGKDD Explorations, 2004, 6(2):77-86. http://portal.acm.org/citation.cfm?id= 1046456.1046467&coll=GUIDE&dl=GUIDE
  • 9Chomicki J, Godfrey P, Gryz J, Liang D. Skyline with presorting. In: Proc. of the IEEE Int'l Conf. on Data Engineering. Los Alamitos: IEEE Computer Society Press, 2003. http://www.cs.sfu.ca/CC/843/jpei/Skyline/Chomicki-Presorting-ICDE03.pdf
  • 10Tan KL, Eng PK, Ooi BC. Efficient progressive skyline computation. In: Proc. of the 27th Int'l Conf. on Very Large Data Bases. 2001.301-310. http://www.vldb.org/conf/2001/P301.pdf

共引文献34

同被引文献16

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部