摘要
推导了考虑径向力、力矩联合作用的滚子轴承的非线性轴承力和力矩,建立了圆柱滚子轴承刚性转子系统的四自由度动力学方程,利用求解非线性非自治动力系统周期解的延拓打靶算法进行计算,根据F loquet乘子判断周期运动的分岔。以某滚子轴承刚性转子系统为例,研究了该类转子系统在径向间隙-转速、阻尼-转速、力矩-转速参数域内周期运动的分岔及失稳规律。结果发现:随径向间隙、阻尼和力矩的变化,周期运动将产生倍周期或Hop f分岔,分岔转速随参数变化而改变。其中力矩的存在会明显降低系统的失稳转速,可通过选择合适的结构和工况参数尽量避免滚子轴承转子系统出现非周期运动。
Nonlinear bearing forces and moments of roller bearing and dynamic equations of roller bearing system are established.The bifurcation and the stability of the periodic motion of the system are studied by continuation-shooting algorithm for periodic solutions of nonlinear non-autonomous dynamics system,and floquet factors are used to judge the bifurcation behavior of the system.Taking a rigid rotor system in cylinder roller bearing as an example,the bifurcation of the rotor system in parameter domains of radial clearance-rotating speed,damping-rotating speed and bending moment-rotating speed are studied.Results show that the periodic motion of the rotor loses stability by Hopf bifurcation or doubling period bifurcation when radial clearance,damping and bending moment change.And the parameters of rotor bearing system are chosen to obtain periodic motion.
出处
《振动.测试与诊断》
EI
CSCD
北大核心
2011年第5期637-641,668,共5页
Journal of Vibration,Measurement & Diagnosis
基金
国家自然科学基金资助项目(编号:50905061)
中央高校基本科研业务费专项基金资助项目
关键词
圆柱滚子轴承
转子系统
周期运动
分岔
cylinder roller bearing rotor system periodic motion bifurcation