期刊文献+

果糖及葡萄糖混合物为底物的丙酮丁醇发酵 被引量:7

Acetone-butanol fermentation from the mixture of fructose and glucose
原文传递
导出
摘要 旨在以果糖和葡萄糖混合物模拟能源作物菊芋块茎水解液发酵生产丁醇。在培养基初始pH 5.5,发酵过程不控制pH的混合糖发酵中,出现了发酵提前终止现象,终点残糖浓度达23.26 g/L,而丁醇产量仅5.51 g/L。进一步对比混合糖及葡萄糖、果糖不控制pH的发酵结果表明,导致这一现象的原因可能是有机酸毒性太大和pH太低。全程控制pH的混合糖发酵结果表明,高pH条件有利于提高糖利用率,但产酸多,丁醇产量较低;而低pH条件下发酵残糖较多,但丁醇产量相对较高。基于此,文中采用阶段性pH调控策略,即将发酵初期的pH控制在5.5,待菌体OD620上升到1.0后,解除pH控制,发酵终点残糖浓度下降到2.05 g/L,丁醇产量也相应提高到10.48 g/L。 A mixture of fructose and glucose was developed to simulate the hydrolysate of Jerusalem artichoke tubers,the fructose-based feedstock suitable for butanol production.With the initial pH of 5.5 without regulation during mixed-sugar fermentation,as high as 23.26 g/L sugars were remained unconverted,and butanol production of 5.51 g/L were obtained.Compared with either glucose or fructose fermentation,the early termination of mixed-sugar fermentation might be caused by toxic organic acids and the low pH.When the pH of the fermentation system was controlled at higher levels,it was found that sugars utilization was facilitated,but less butanol was produced due to the over-accumulation of organic acids.On the other hand,when the pH was controlled at lower levels,more sugars were remained unconverted,although butanol production was improved.Based on these experimental results,a stage-wise pH regulation strategy,e.g.,controlling the pH of the fermentation system at 5.5 untill the OD620 reached 1.0,and then the pH control was removed,was developed,which significantly improved the fermentation performance of the system,with only 2.05 g/L sugars unconverted and 10.48 g/L butanol produced.
出处 《生物工程学报》 CAS CSCD 北大核心 2011年第10期1448-1456,共9页 Chinese Journal of Biotechnology
关键词 丙酮丁醇发酵 混合糖 pH调控 acetone-butanol fermentation mixed sugars pH regulation
  • 相关文献

参考文献16

  • 1Durre P. Biobutanol: an attractive biofuel. Biotechnol J, 2007, 2: 1525-1534.
  • 2Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol Rev, 1986, 50: 484-524.
  • 3隆小华,刘兆普,王琳,蒋云芳.半干旱地区海涂海水灌溉对不同品系菊芋产量构成及离子分布的影响[J].土壤学报,2007,44(2):300-306. 被引量:20
  • 4Niness KR. Inulin and oligofructose: what are they? J Nutr, 1999, 129: 1402-1406.
  • 5Ounine K, Petitdemange H, Raval G, et al. Regulation and butanol inhibitong of D-xylose and D-glucose uptake in Clostridium acetobutylicum. Appl Environl Microbiol, 1985, 49: 874-878.
  • 6Annous BA, Blaschek HP. Regulation and localization of amylolytic enzymes in Clostridium aeetobutylicum ATCC 824. Appl Environ Microbiol, 1990, 56(8): 2559-2561.
  • 7Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31: 426-428.
  • 8Herrero AA, Gomez RF, Snedecor B, et al. Growth inhibition of Clostridium thermocellum by carboxylic acids: a mechanism based on uncoupling by weak acids. Appl Microbiol Biotechnol, 1985, 22: 53-62.
  • 9Huesemann M, Papoutsakis ET. Effect of acetoacetate, butyrate, and uncoupling ionophores on growth and product formation of Clostridium acetobutylicum. Biotechnol Lett, 1986, 8: 37-42.
  • 10Huang L, Gibbins LN, Forsberg CW. Transmembrane pH gradient and membrane potential in Clostridium acetobutylicum during growth under acetogenic and solventogenic conditions. Appl Environ Microbiol, 1985, 50(4): 1043-1047.

二级参考文献12

共引文献19

同被引文献140

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部