期刊文献+

基于N-S方程和自由转捩预测耦合求解的钝后缘翼型气动性能计算 被引量:3

Computational aerodynamic analysis of thick flatback airfoils coupling RANS and transition prediction code
下载PDF
导出
摘要 大厚度钝后缘翼型由于结构和气动性能上的优点,被用于作为大型风力机叶片设计的内侧翼型。而由于其大厚度的特点和风洞实验阻塞度的限制,大雷诺数的风洞实验数据很少,给此类翼型的设计和使用带来困难。本文基于雷诺平均Navier-Stokes(RANS)方程和自由转捩预测耦合求解方法,进行了大厚度钝后缘翼型的气动性能计算研究;针对由于钝后缘后的涡脱落而造成的翼型表面压力分布的脉动,发展了有时均效应的转捩模型以考虑这种周期脉动的时均效应,并对传统的耦合求解方法进行了修改。通过对风力机翼型DU97-W-300的钝后缘改形DU97-Flat翼型的气动性能计算,分析了网格数对计算结果和计算效率的影响。并将计算的DU97-W-300翼型的气动性能和实验结果进行了比较,表明通过本文发展的耦合求解方法可以在更少的计算网格时得到比参考文献更吻合风洞实验结果的气动性能,为此类翼型的设计和使用提供数值计算基础。 The flatbact(blunt trailing edge) airfoils are adopted for the inboard region of large wind turbine blades due to their structural and aerodynamic performance advantages.Very limited experimental data at high Reynolds numbers makes it difficult for wind turbine designers to design and use these section shapes because the wind tunnel experiments are limited by the Reynolds number and solid blockage.In this study,a 2-D Reynolds-averaged Navier-Stokes solver coupled with a transition prediction code based on en method is used to CFD calculation of blunt trailing edge airfoils.A new coupling structure with a time-accurate transition prediction model taking into accounting the unsteady flow as a result of the bluff-body vortex shedding is developed.An airfoil of DU97-Flat modified by DU97-W-300 airfoil for wind turbine application is calculated and effects of grid points are investigated.The aerodynamic performance indicators of DU97-W-300 are calculated and compared with Timmer′s wind tunnel experiment results.It shows that the indicators calculated from the method illustrated in this study agree much better to Timmer′s wind tunnel experiment results compared to other results from literature while with much less gird numbers.
出处 《空气动力学学报》 CSCD 北大核心 2011年第5期613-618,共6页 Acta Aerodynamica Sinica
关键词 风力机 翼型 钝后缘 耦合 转捩预测 wind turbine airfoil flatback couple transition prediction
  • 相关文献

参考文献23

  • 1MARSHALL L. Usage advice [EB/OL]. http://wind, nrel. gov/designcodes/advice, html, Last modified 05-July-2005; accessed 28-Janu. -2010.
  • 2PATRICK J. AeroDyn theory manual [ R]. NREIMEL-500- 36881, 2005.
  • 3SIMMS D, SCHRECK S, HAND M, FINGERSH L J. NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: A comparison of predictions to measurements [ R ]. NREL/TP-500-29494. Golden, CO: National Renewable Energy Laboratory, 2001.
  • 4TANGLER J L. The nebulous art of using wind-tunnel airfoil data for predicting rotor performance [ R ]. NREL/CP-500- 31243. Golden, CO: National Renewable Energy Laboratory, 2002.
  • 5TPI Composites. Innovative design approaches for large wind turbine blades[ R]. SAND2003-0723, 2003.
  • 6TPI Composites. Innovative design approaches for large wind turbine blades-final report[ R], SAND2004-007d, 2004.
  • 7STANDISH K J, van DAM C P. Aerodynamic analysis of blunt trailing edge airfoils[ J]. Journal of Solar Energy Engineering, 2003, 125(4) : 479-487.
  • 8JACKSON K, ZUTECK M, van DAM C P, STANDISH K J, BERRY D. Innovative design approaches for large wind turbine blades[J]. Wind Energy, 2005, 8(2) : 141-171.
  • 9Van ROOIJ R P J O M, TIMMER W A. Roughness sensitivity considerations for thick rotor blade airfoils[ J]. Journal of Solar Energy Engineering, 2003, 125(4): 468-478.
  • 10BAKER J, MAYDA E, van DAM C P. Computational and experimental analysis of thick fatback wind turbine airfoils [R]. AIAA Paper 2006-193, 2006.

二级参考文献27

  • 1刘雄,陈严,叶枝全.水平轴风力机气动性能计算模型[J].太阳能学报,2005,26(6):792-800. 被引量:105
  • 2夏商周,申振华.改型尾缘对翼型流场影响的数值模拟[J].沈阳航空工业学院学报,2005,22(5):1-3. 被引量:10
  • 3Rooij R P J O M Van, Timmer W A. Roughness Sensitivity Considerations for Thick Rotor Blade Airfoils. Journal of Solar Energy Engineering, 2003, 125:468-478.
  • 4Jackson K J, Zuteck M D, et al. Innovative Design Approaches for Large Wind Turbine Blades. Wind Energy, 2005, 8:141-171.
  • 5Althaus D. Niedriggeschwindigkeitsprofile. Vieweg, Braunschweig, Germany, 1986, 138-175.
  • 6Standish K J, Dam C P Van, Aerodynamic Analysis of Blunt Trailing Edge Airfoils. Journal of Solar Energy Engineering, 2003, 125:479-487.
  • 7Baker J P, Mayda E A, Dam C P Van. Experimental Analysis of Thick Blunt Trailing-Edge Wind Turbine Airfoils. Journal of Solar Energy Engineering, 2006, 128:422-431.
  • 8Bertagnolio F, Soerensen N, Johansen J, et al. Wind Turbine Airfoil Catalogue. Risoe-R-1280(EN), Denmark: Risoe National Laborary, 2001. 152.
  • 9刘雄.[D].汕头:汕头大学,1999.
  • 10Wilson Robert E,Peter B S,et al.Aerodynamic performance of wind turbines[M].Department of Mechanical Engineering,Oregon State University,1976.

共引文献66

同被引文献34

  • 1YANG Ke1,2,ZHANG Lei1,3 & XU JianZhong1,2 1 Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China,2 Key Laboratory of Wind Energy Utilization,Chinese Academy of Sciences,Beijing 100190,China,3 Graduate School of Chinese Academy of Sciences,Beijing 100190,China.Simulation of aerodynamic performance affected by vortex generators on blunt trailing-edge airfoils[J].Science China(Technological Sciences),2010,53(1):1-7. 被引量:15
  • 2夏商周,申振华.改型尾缘对翼型流场影响的数值模拟[J].沈阳航空工业学院学报,2005,22(5):1-3. 被引量:10
  • 3TPI Composites. Parametric study for large wind turbine blades[R]. SAND 2002-2519, 2002.
  • 4van Rooji R P J O M, Timmer W A. Roughness sensitivity consideration for thick blade airfoils [ R]. AIAA- 2003-0350, 2003.
  • 5Ferrer E, Munduate X. CFD predictions of transition and distributed roughness over a wind turbine airfoil [ R ]. AIAA 2009-269, 2009.
  • 6Standish K, Rimmington P. Computational prediction of airfoil roughness sensitivity [ R]. AIAA 2010-460, 2010.
  • 7Timmer W A, van Rooji R P J O M. Wind tunnel results for a 25% thick wind turbine blade airfoil[ A]. Proceedings European Community Wind Energy Conference [C], Germany, 1993, 416--419.
  • 8Timmer W A, van Rooij R PJ O M. Summary of the Delft University wind turbine dedicated airfoils [ R ]. AIAA-2003-0352, 2003.
  • 9Somers D M, Tangler J L. Wind-tunnel test of the S814 thick root airfoil [ A ]. Proceedings of ASME 1995 [C], Reno, USA, 1995, 197-217.
  • 10Braslow A L, Knox E C. Simplified method for determi-nation of critical height of distributed roughness particles for boundary-layer transition at Mach numbers from 0 to 5[R]. NACA technical note 4363, USA, 1958.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部