期刊文献+

基于多尺度贯序式卡尔曼滤波的运动声阵列跟踪算法

Tracking Algorithm of Motion Acoustic Array Based on Multi-scale Sequential Kalman Filter
下载PDF
导出
摘要 为了研究运动声阵列对二维目标在复杂环境中的实时跟踪性问题,根据运动声阵列及二维目标的运动特点建立了状态方程与测量方程,并将其描述为块的形式.根据不同的状态块,利用小波变换把状态块分解到不同尺度上,分别在时域和频域上建立相应尺度上的状态与观测信息之间的关系;采取卡尔曼滤波器递推思想来实现运动声阵列的多尺度贯序式卡尔曼滤波算法,根据最小二乘误差估计理论推导了运动声阵列跟踪系统在球坐标系和直角坐标系下的误差,为提高系统跟踪精度奠定了理论基础,并为工程应用提供了实际方法.与传统的卡尔曼滤波算法相比,Matlab仿真结果表明了本文算法的有效性和优越性. In order to study the motion acoustic array's real-time tracking to two-dimensional target in complex environment, the state equation and measurement equation based on the motion characteristics of dynamic acoustic array and two-dimensional target are established and converted into block form.Then,the state blocks are assigned onto different scales by wavelet transform.The relationship between the state and the measurement information in corresponding scale is established in time domain and frequency domain.After that,the multi-scale sequential Kalman filter algorithm is obtained based on the Kalman filter recursive theory,and the errors of motion acoustic array tracking system in spherical coordinates and rectangular coordinates are deduced by least square error estimation,which lays the theoretical foundation for improving the system tracking precision and provides a practical method for application.Compared with the traditional Kalman filter algorithm,the presented algorithm shows its validity and superiority in Matlab simulation.
出处 《信息与控制》 CSCD 北大核心 2011年第5期588-593,共6页 Information and Control
关键词 多尺度分解 贯序式卡尔曼滤波 运动声阵列 最小二乘误差估计 multi-scale decomposition sequential Kalman filter motion acoustic array least square error estimation
  • 相关文献

参考文献13

  • 1钱学森,于景元,戴汝为.一个科学新领域——开放的复杂巨系统及其方法论[J].自然杂志,1990,13(1):3-10. 被引量:1312
  • 2Daubechies I. Ten lectures on wavelets[M]. Philadelphia, USA: SIAM, 1992.
  • 3Tong X, Girgis A, Makram E. Hybird wavelet - Kalman fil- ter method for forecasting[J]. Electric Power Systems Research, 2000, 54(1): 11-17.
  • 4Abry R Baraniuk R, Flandrin P, et al. Multi-scale nature of net- work traffic[J]. IEEE Transactions on Signal Processing, 2002, 19(3): 28-46.
  • 5肖传民,亓琳,史泽林.多尺度双边滤波及其在图像分割中的应用[J].信息与控制,2009,38(2):229-233. 被引量:4
  • 6Hong L, Chen G, Chui C K. A filter-bank-based Kalman filter- ing technique for wavelet estimation and decomposition of ran- dom signals[J]. IEEE Transactions on Circuits and Systems-Ⅱ: Analog and Digital Signal Processing, 1998, 45(2): 237-241.
  • 7Hong L. Multi-resolutional distributed filtering[J]. IEEE Trans- actions on Automatic Control, 2004, 39(4): 853-856.
  • 8Zhang L, Wu X, Pan Q, et al. Multiresolution modeling and estimation of multisensor data[J]. IEEE Transactions on Signal Processing, 2004, 52(11): 3170-3182.
  • 9Zhang L, Pan Q, Bao P, et al. The discrete Kalman filtering of a class of dynamic multi-scale systems[J]. IEEE Transactions on Circuits and Systems-Ⅱ: Analog and Digital Signal Processing, 2002, 49(10): 668-676.
  • 10Yan L P, Liu B S, Zhou D H. The modeling and estima- tion of asynchronous multirate multisensor dynamic systems[J]. Aerospace Science and Technology, 2006, 10(1): 63-71.

二级参考文献13

  • 1Oppenheim V, Schafer R W, Buck J R. Discrete-Time Signal Processing[M]. Upper Saddle River, NJ, USA: Prentice Hall, 1999.
  • 2Chan P, Lim J S. One-dimensional processing for adaptive image-restoration[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1985, 33(1): 117-126.
  • 3Rank K, Unbehauen R. An adaptive recursive 2-D filter for removal of Gaussian noise in images[J]. IEEE Transactions on Image Processing, 1992, 1(3): 431-436.
  • 4Tomasi C, Manduchi R. Bilateral filtering for gray and color images[A]. Proceedings of the IEEE International Conference on Computer Vision[C]. Piscataway, NJ, USA: IEEE, 1998. 836-846.
  • 5Pappas T N. An adaptive clustering algorithm for image segmentation[J]. IEEE Transactions on Signal Processing, 1992, 40(4): 901-914.
  • 6Liu J Q, Yang Y H. Multiresolution color image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(7): 689-700.
  • 7Andrey P, Tarroux E Unsupervised segmentation of Markov random field modeled textured images using selectionist relaxation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(3): 252-262.
  • 8Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-741.
  • 9Barash D. A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(6): 844-847.
  • 10Elad M. On the origin of the bilateral filter and ways to improve it[J]. 1EEE Transactions on Image Processing, 2002, 11(10): 1141-1151.

共引文献1314

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部