期刊文献+

一种基于量子染色体变异的移动机器人路径规划融合算法 被引量:5

A Fusion Algorithm for Mobile Robot Path Planning Based on Quantum Chromosome Mutation
下载PDF
导出
摘要 为了解决机器人路径规划中的"局部最小"问题,提出了一种基于量子染色体变异的人工势场法和栅格法相融合的移动机器人路径规划算法.首先,对人工势场的斥力场进行改进,然后利用融合的人工势场法和栅格法对路径进行规划,产生初始化种群,最后利用量子比特对染色体编码、利用量子染色体变异对种群个体进行更新,完成最佳路径搜索.仿真实验表明,本文提出的融合算法能够有效地避开障碍物,稳定地产生移动机器人的最佳规划路径,提高了种群质量和收敛速度,适合于求解复杂优化问题,达到了预期效果. In order to solve the problem of local minima in mobile robot path planning,a fusion algorithm of artificial potential field and grid based on quantum chromosome mutation is proposed.Firstly,the repulsion field of artificial potential function is improved.Then,the fusion method of artificial potential field and grid is used to plan path for mobile robot and produce initializing population.Finally,quantum bit is used to code chromosome,and quantum chromosome mutation is used to update population individual for getting the best path.Simulation result shows that the proposed method can be used to avoid the obstacles effectively,get the optimal path for mobile robot stably and increase population quality and convergence rate.It is fit for the solution of complex optimization problems and achieves the desired results.
出处 《信息与控制》 CSCD 北大核心 2011年第5期594-599,共6页 Information and Control
基金 国家自然科学基金重大研究计划重点资助项目(90820306) 国家自然科学基金重点资助项目(60632050)
关键词 量子染色体 人工势场 栅格 路径规划 移动机器人 quantum chromosome artificial potential field grid path planning mobile robot
  • 相关文献

参考文献13

  • 1Stentz A C D. A real time resolution optimal replanning for globally constraint problem[C]//The 18th National Conference on Artificial Intelligence. Cambridge, MA, USA: MIT Press, 2002: 1088-1096.
  • 2赵忆文,谈大龙.基于速度矢量可行度的移动机器人多行为综合决策方法[J].信息与控制,2001,30(1):72-75. 被引量:3
  • 3Khatib O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Re- search, 1986, 5(1): 90-98.
  • 4D'Amico A, Ippoliti G, Longhi S. A radial basis func- tion networks approach for the tracking problem of mobile robots[C]//Proceedings of the IEEE/ASME International Con- ference on Advanced Intelligent Mechatronics. Piscataway, NJ, USA: IEEE, 2001: 498-503.
  • 5王醒策,张汝波,顾国昌.基于势场栅格法的机器人全局路径规划[J].哈尔滨工程大学学报,2003,24(2):170-174. 被引量:58
  • 6Bruce J, VelosoM. Real-time randomized path planning for robot navigation[C]//IEEE/RSJ International Conference on In- telligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2002: 2383-2388.
  • 7Park M G, Lee M C. Artificial potential field based path plan- ning for mobile robots using a virtual obstacle concept[C]//Pro-ceedings of 2003 IEEE International Conference on Advanced Intelligent. Piscataway, NJ, USA: IEEE, 2003: 20-23.
  • 8Han K H, Kim J H. Genetic quantum algorithm and its appli- cation to combinatorial optimization problem[C]//Proceedings of the IEEE Conference on Evolutionary Computation. Piscat- away, NJ, USA: IEEE, 2000: 1354-1360.
  • 9Ge S S, Cui Y J. New potential functions for mobile robot path planning[J]. IEEE Transactions on Robotics and Automation, 2000, 16(5): 615-620.
  • 10Wang C M, Soh Y C, Wang H, et al. A hierarchical genetic algorithm for path planning in a static environment with ob- stacles[C]//IEEE Canadian Conference on Electrical and Com- puter Engineering. Piscataway, NJ, USA: IEEE, 2002: 1652- 1657.

二级参考文献4

共引文献59

同被引文献52

  • 1刘满禄,张华,胡天链.改进的人工势场法用于移动机器人导航[J].华中科技大学学报(自然科学版),2008,36(S1):177-180. 被引量:11
  • 2朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132-136. 被引量:123
  • 3朱庆保.复杂环境下的机器人路径规划蚂蚁算法[J].自动化学报,2006,32(4):586-593. 被引量:46
  • 4DORIGOM,STUTZLET.蚁群优化[M].张军,胡晓敏,罗旭耀,译.北京:清华大学出版社,2007:216-246.
  • 5Stentz A C D. A real lime resoulion optimal replanning for globally constraint problem. The 18th National Conf on Artificial Intelligence. Cambridge, MA: MITPress; Alberta Canada: Edmonlon, 2002: 1088-1096.
  • 6Ge S S, Cui Y J. New potential functions for mobih robot path plan- ning. IEEI Trans Robotic Aulom, 2000; 16(5 ) : 615-620.
  • 7Khatib O. Real time obstacle avoidanc for manipulators and mobile . robots. Int J of Robotic Research, 1986; 5( 1 ) : 90-98.
  • 8Koren Y, Borenstein J. Potentia field methods and their inherent lirfitations for mobile rotmt navigation. In: Proc IEEE Conf Robotics and Automation: Sacramento, CA, Apr 7-12, 1991:1398-1404.
  • 9Holland J H. Adaptation in natural anti artificial systems: an intro- ductory analysis with application to biology, Control, anti Artificial Intelligence. 2nd edition, Cambridge, MA: MIT press, 1992.
  • 10De Jong K A. An analysisn of behavior of a class of genetic adaptive systems. Ph D Dissertation, University of Michigan, 1975, No 76-9381.

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部