期刊文献+

基于递归高阶神经网络的污水处理系统建模 被引量:5

Wastewater Treatment System Modeling Based on High-Order Recurrent Neural Network
下载PDF
导出
摘要 针对污水处理过程的多变量、非线性、大滞后和强耦合的特点,利用递归高阶神经网络对污水处理过程关键水质参数——化学需氧量、生化需氧量、悬浮固体和氨氮——进行建模.对污水处理厂生化反应过程实际运行数据的实验表明所提出的建模方法是有效的,同时与前馈神经网络建模和一阶递归神经网络建模相比较,结果显示递归高阶神经网络建模具有更高的精确性. Aiming at the characteristics of wastewater treatment process such as multi-variable,nonlinearity,large time delay and strong coupling,a modeling method using recurrent high-order neural network(RHONN) is proposed to establish models for the key parameters,including chemical oxygen demand,biological oxygen demand,suspended solid and NH_4-N. This modeling method is then applied to a certain wastewater treatment plant's actual running data during biological reaction process.The simulation results demonstrate that the proposed method is effective.The comparisons with the feed-forward neural network and first-order recurrent neural network show mat the modeling results by the recurrent high-order neural network own higher accuracy.
出处 《信息与控制》 CSCD 北大核心 2011年第5期710-714,720,共6页 Information and Control
基金 国家863计划资助项目(2009AA04Z155 2007AA04Z160) 北京市属市管高等学校人才强教计划资助项目(PHR(IHLB)201006103)
关键词 污水处理 递归高阶神经网络 滤波 wastewater treatment recurrent high-order neuronal network filtering
  • 相关文献

参考文献15

  • 1Gracia M D, Grau P, Huete E, et al. New generic mathematical model for WWTP sludge digesters operating under aerobic and anaerobic conditions: Model building and experimental verifi- cation[J]. Water Research, 2009, 43(18): 4626-4642.
  • 2丛秋梅,柴天佑,余文.污水处理过程的递阶神经网络建模[J].控制理论与应用,2009,26(1):8-14. 被引量:23
  • 3周丽,姜长生,都延丽.基于S函数调节的非线性自适应动态面控制[J].信息与控制,2008,37(6):675-680. 被引量:3
  • 4赵小国,杜琦,阎晓妹.基于径向基神经网络的分数阶混沌系统控制[J].信息与控制,2010,39(2):142-146. 被引量:5
  • 5Civelekoglu G, Yigit N O, Diamadopoulos E, et al. Modelling of COD removal in a biological wastewater treatment plant us- ing adaptive neuro-fuzzy inference system and artificial neural network[J]. Water Science & Technology, 2009, 60(6): 1475- 1487.
  • 6Du H B, Shao H H, Yao P J. Adaptive neural network control for a class of low-triangular-structured nonlinear systems[J]. IEEE Transactions on Neural Networks, 2006, 17(2): 509-514.
  • 7韩红桂,李淼,乔俊飞.基于模型输出敏感度分析法的动态RBF神经网络设计[J].信息与控制,2009,38(3):370-375. 被引量:4
  • 8Faur C, Cougnaud A, Dreyfus G, et al. Modelling the break- through of activated carbon filters by pesticides in surface wa- ters with static and recurrent neural networks[J]. Chemical En- gineering Journal, 2008, 145(1): 7-15.
  • 9Thiery F, Grieu S, Traore A. Integration of neural networks in a geographical information system for the monitoring of a catch- ment area[J]. Mathematics and Computers in Simulation, 2008, 76(5): 388-397.
  • 10Yuzgec U. Dynamic neural-network-based model-predictive control of an industrial baker's yeast drying process[J]. IEEE Transactions on Neural Networks, 2008, 19(7): 1231-1242.

二级参考文献59

共引文献28

同被引文献62

  • 1常玉清,王小刚,王福利.基于多神经网络模型的软测量方法及应用[J].东北大学学报(自然科学版),2005,26(6):519-522. 被引量:13
  • 2李双虎,张风海.一个新的聚类有效性分析指标[J].计算机工程与设计,2007,28(8):1772-1774. 被引量:13
  • 3Juan R. Castro, Oscar Castillo, Patricia Melin, et al. A hybrid learning algorithm for a class of interval type- 2 fuzzyneuralnetworks [J]. Information Sciences. 2009, 179(13): 2175-2193.
  • 4Wang N, Meng Er J, Meng X. A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks [J]. Neurocomputing. 2008, 72: 3818-3829.
  • 5Deng X, Wang X. Incremental learning of dynamic fuzzy neural networks for accurate system modeling [J]. Fuzzy Sets and Systems. 2009, 160(7): 972-987.
  • 6Leng 6, Prasad G, McGinnity T M. An on-line algorithm for creating self- organizing fuzzy neural networks [J]. Neural Networks. 2004, 17: 1477-1493.
  • 7Misra M, Yue H H, Qin S J, et al. Multivariate process monitor- ing and fault diagnosis by multi-scale PCA[J]. Computers and Chemical Engineering, 2002, 26(9): 1281-1293.
  • 8Cherry G A, Qin S J. Monitoring non-normal data with principal component analysis and adaptive density estimation [C]//Pro-ceedings of the 46th IEEE Conference on Decision and Control. 2007: 352-359.
  • 9Chong I G., Albin S L, Jun C H. A data mining approach to process optimization without an explicit quality function[J]. IIE Transactions on Operations Engineering, 2007, 39: 795-804.
  • 10Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improvement: Recent developments and ap- plications in steel industry[J]. Computers and Chemical Engi- neering, 2008, 32(1/2): 12-24.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部