摘要
如果一个非凡的t-设计是一个对称设计,则t=2.设2-(v,k,λ)是一个非平凡的对称设计,G是它的一个旗传递自同构群.在过去正对λ≤4情形研究的基础上,本文讨论λ=5的情况.证明了如果G是2-(v,k,5)对称设计的一个旗传递点本原自同构群,并且G是几乎单群,则G的基柱不能为2F4(q2)群.证明中需使用2F4(q2)群的极大子群的分类,同时也需要考虑2F4(q2)群的置换表示.
If a non-trivial t--design is a symmetric design, t = 2. 2-(v, k, k) will be a non-trivial symmetric design, and G will be a flag-transitive automorphism group. Cases λ≤ has been discussed by some scholars, and this paper attempts to discuss A = 5. In this paper, it is to be proved that if G is point-primitive automorphism group acting 2 2 fiag-transitive on a 2-(v, k, 5) symmetric design, then scole of G is not F, (q). In proof, the classification of max- imum subgroups should be used and permutation representation of 2F4 (q2) should also be taken into account.
出处
《南通大学学报(自然科学版)》
CAS
2011年第3期74-77,共4页
Journal of Nantong University(Natural Science Edition)
基金
国家自然科学基金资助项目(10871205)
南通市应用研究计划项目(K2009036)
关键词
群
旗传递性
对称设计
group
flag-transitivity
symmetric design