期刊文献+

一种自适应正则化参数和模数的图像去卷积方法 被引量:1

One method of image deconvolution of adaptive regularization parameter and modulus
下载PDF
导出
摘要 自适应正则化方法是解决图像去卷积问题中平滑噪声和保持边缘矛盾的一种方法,传统的自适应正则化方法只考虑到图像的整体信息而忽略了图像内部不同区域的细节信息,本文提出的自适应正则化方法,利用Katsaggelos自适应正则化参数,自适应的改变正则化参数,并通过图像内部不同区域的信息自适应改变正则化模数矩阵.从而实现了平滑噪声和保持边缘的平衡,既保持了边缘又抑制了噪声,取得了更好的去卷积效果. The adaptive regularization method is to solve the conflict problem between smoothing noise and the edge-preserving of image deconvolution. But the traditional adaptive regularization method only takes into account the overall information of image while ignoring the details information of different areas within the image. The paper presents an adaptive regularization method to modify regularization parameter self-adaptively by manipulating Katsaggelos adaptive regularization parameter, and to modi- fy regularization modulus self-adaptively based on the information from the different internal regions of the image. Consequently we can achieve a goal smoothing noise and maintaining edge. That is to say, our method can reach a balance of edge-preserving and noise suppression, and also achieve a better deconvolution result.
出处 《北京交通大学学报》 CAS CSCD 北大核心 2011年第5期84-88,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(60975078 60902058 61105119) 北京市自然科学基金资助项目(4112047) 中央高校基本科研业务费专项资金项目资助(2011JBZ005)
关键词 自适应正则化 正则化模数 正则化参数 adaptive regularization regularized modulus regularization parameter
  • 相关文献

参考文献9

  • 1Mario B. Introduction to inverse problems in imaging[M]. Institute of Physics Publishing Bristol and Philadelphia, 1998:14 - 25.
  • 2Deepa K, Dimitrios H. A novel blind deconvolution scheme for image restoration using recursive filtering [ J ]. IEEE Transactions on Signal Processing, 1998, 46 (2) : 375 - 390.
  • 3Weiner N. Extrapolation, Interpolation, and smoothing of stationary time series[M]. Cambridge, Mass: The MIT Press, 1942.
  • 4Chen W D. Computation of fourier transforms for noisy bandlimited signals[J]. Siam Journal on Numerical Analy- sis, 2011, 49(1): 1-14.
  • 5Calvetti D, Reiehel L, Sgallari F, et al. A regularizing lanezos iteration method for undetermined linear systems [J]. Computation and Applied Mathematics, 2000, 115 :101 - 120.
  • 6Chen C K, Hon M H.The morphology and mechanical properties of TiN/Ni-P-SiChybrid coatings [J].Surface and Coatings Technology,2002,155:214 -220.
  • 7Kang M G, Katsaggelos A K. Simultaneous multichannel image restoration and estimation of the regularization pa- rameters [ J ]. IEEE Transactions on Image Processing, 1997, 6(5) :774- 778.
  • 8Reddy V V N, Rarnamoorthy B, Kesavan Nair P.A study on the wear resistance of electroless Ni-P/Diamond composite coatings[ J].Wear,2000,239:111- 116.
  • 9吴显金,王润生.小波域噪声分布估计的自适应正则化图像恢复[J].计算机辅助设计与图形学学报,2006,18(4):502-506. 被引量:6

二级参考文献12

  • 1杨朝霞,逯峰,田芊.小波构造变正则参数变分模型在带噪图像恢复中的应用[J].计算机辅助设计与图形学学报,2004,16(12):1645-1650. 被引量:5
  • 2Perry S W, Guan L. Weight assignment for adaptive image restoration by neural networks[J]. IEEE Transactions on Neural Networks, 2000, 11(1): 156-170
  • 3Belge M, Kilmer M E, Miller E L. Wavelet domain image restoration with adaptive edge-preserving regularization[J]. IEEE Transactions on Image Processing, 2000, 9(4): 597-608
  • 4Karayiannis N B, Venetsanopoulos A N. Regularization theory in image restoration: the stabilizing functional approach[J]. IEEE Transactions on Acoustics, Speech, and Signal Procession, 1990, 38(7): 1155-1178
  • 5Gonzales R C, Woods R E. 数字图像处理[M]. 阮秋琦, 阮宇智, 等译. 北京: 电子工业出版社, 2003.
  • 6Kang M G, Katsaggelos A K. General choice of the regularization functional in regularized image restoration[J]. IEEE Transactions on Image Processing, 1995, 4(5): 594-602
  • 7Lagenduk R L, Biemond J, Boekee D E. Regularized iterative image restoration with ring reduction[J]. IEEE Transactions on Acoustics, Speech, and Signal Procession, 1988, 36(12): 1874-1887
  • 8Katsaggelos A K, Biemond J, Mersereau R M. A regularized iterative image restoration algorithm[J]. IEEE Transactions on Signal Processing, 1991, 39(4): 914-929
  • 9Reeves S J. Optimal space-varying restoration in iterative image restoration[J]. IEEE Transactions on Image Processing, 1994, 3(3): 319-324
  • 10Berger T, Strmberg J O, Eltoft T. Adaptive regularized constrained least squares image restoration[J]. IEEE Transactions on Image Processing, 1999, 8(9): 1191-1203

共引文献5

同被引文献11

  • 1Hastie T,Tibshirani R,Friedman J.统计学习基础:数据挖掘、推理与预测[M].范明,柴玉梅,昝红英,等,译.北京:电子工业出版社,2004 = 1-45.
  • 2Biihlmann P, van de Geer S. Statistics for high-dimensionaldata: methods, theory and applications[M]//Springer Se-ries in Statistics. Berlin:Springer-Verlag.2011 ; 1-320.
  • 3Tibshirani R. Regression shrinkage and selection via theLASSO[J]. Journal of the Royal Statistical Society: SeriesBJ996,5S: 267-288.
  • 4Efron B, Hastie T, Johnstone I,et al. Least angle regression[J]. The Annals of Statistics,2004,32: 407 — 489.
  • 5Zou H. The adaptive LASSO and its oracle properties[J].Journal of the American Statistical Association,2006,101:1418-1429.
  • 6Friedman J,Hattie T T, Hofling T R. Pathwise coordinateoptimization [ J ]. Annals of Applied Statistics, 2007(1):302—332.
  • 7Friedman J, Hattie T, Tibshirani R. Regularization pathsfor generalized linear models via coordinate descent [J ]. Journal of Statistical Software, 2010.33 : 1~22.
  • 8支永安,欧阳一鸣.回归分析在安徽电信差异化服务中的应用[J].合肥工业大学学报(自然科学版),2011,34(3):375-378. 被引量:1
  • 9吕占强,孙玉宝.稀疏性正则化的图像Laplace去噪及PR算子分裂算法[J].计算机应用研究,2011,28(9):3542-3544. 被引量:2
  • 10崔静,郭鹏江,夏志明.自适应Lasso在Poisson对数线性回归模型下的性质[J].西北大学学报(自然科学版),2011,41(4):565-568. 被引量:8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部