期刊文献+

Comparison of Linearized Kalman Filter and Extended Kalman Filter for Satellite Motion States Estimation 被引量:1

Comparison of Linearized Kalman Filter and Extended Kalman Filter for Satellite Motion States Estimation
下载PDF
导出
摘要 The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but it should not be used for estimating the state of a nonlinear system such as a satellite motion because it is difficult to obtain the desired estimation results.The linearized Kalman filtering approach and the extended Kalman filtering approach have been proposed for a general nonlinear system.The equations of satellite motion are described.The satellite motion states are estimated,and the relevant estimation errors are calculated through the estimation algorithms of the both above mentioned approaches implemented in Matlab are estimated.The performances of the extended Kalman filter and the linearized Kalman filter are compared.The simulation results show that the extended Kalman filter is much better than the linearized Kalman filter at the aspect of estimation effect.
作者 杨亚非
出处 《Journal of Measurement Science and Instrumentation》 CAS 2011年第4期307-311,共5页 测试科学与仪器(英文版)
关键词 nonlinear filtering approach nonlinear system satellite orbit state space state estimation 扩展卡尔曼滤波器 非线性系统 状态估计 卫星运动 卡尔曼滤波方法 卡尔曼滤波估计 Matlab 测量过程
  • 相关文献

参考文献10

  • 1J.R.Forbes.Extended Kal man filter and sigmanpoint filter approaches to adaptive filtering[].AIAA GuaidanceNavigationand Control Conference.2010
  • 2J.L.Crassidis,,F.L.Markley,,Y.Cheng.Survey of nonlinear altitude estimation methods[].Journal of GuidanceControland Dynamics.2007
  • 3R.Brown,,R.Hwang.Introduction to random signals and applied Kal man filtering[]..1997
  • 4DAN S.Opti mal state esti mation:Kal man,H∞and nonlinear approaches[]..2006
  • 5Arther Gelb.Applied Optimal Estimation[]..1974
  • 6Julier SJ,Uhlmann JK,Durrant-Whyte HF.A new method for the nonlinear transformation of means and covariances in filters and estimators[].IEEE Transactions on Automatic Control.2000
  • 7Arulampalam MS,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[].IEEE Transactions on Signal Processing.2002
  • 8Simon J Julier,Jeffrey K Uhlmann.A new extension of the Kalman filter to nonlinear systems[].The Proceedings of AeroSense: The th International Symposium on Aerospace/Defense Sensing Simulation and Controls.1997
  • 9Kalman R E.A New Approach to Linear Filtering and Prediction Theory[].Trans ASME Journal of Basic Eng.1960
  • 10Kalman R E,Bucy R S.New Results in Linear Filtering and Prediction Theory[].Journal of Basic Engineering Transactions of the ASME.1961

同被引文献13

  • 1HallDL,Llinas J.多传感器数据融合手册[M].杨露菁,耿伯英,译.北京:电子工业出版社,2008.
  • 2Blom H A, Bar-Shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients [ J]. IEEE Transactions on Automatic Control, 1988, 33(8) : 780 -783.
  • 3Kalman R E. A new approach to linear filter and prediction problems[ J]. Transactions of the ASME-Joumal of Basic Enginearing, 1960, 82 (1): 34 -45.
  • 4Xiong K, Liang T, Lei Y J. Multiple model Kalman filter for attitude detemaination of precision pointing spacecraft [ J ]. Acta Astronautica, 2011, 68(7) : 843 -852.
  • 5赵温波,都基焱.组网雷达噪声惯性坐标系误差统计特性研究[J].炮兵学院学报,2010(5):91-95.
  • 6Zhou H R, Jing Z L, Wang P D. Tracking of maneuvering targets[ M ]. Beijing: National Defense Industry Press, 1991 : 1 -55.
  • 7Han C Z, Zhu H Y, Duan Z S. Multi-source information fusion[ MI. Beijing: Tsinghua University Press, 2010:142 -154.
  • 8王华楠,刘高峰,顾雪峰.自适应转弯模型的交互多模型算法研究[J].弹箭与制导学报,2008,28(5):241-244. 被引量:4
  • 9赵艳丽,陈永光,蒙洁,董鸿燕.分布式组网雷达抗多假目标欺骗干扰处理方法[J].电光与控制,2011,18(3):25-30. 被引量:28
  • 10韩晓威.雷达组网中显控技术研究[J].现代导航,2011(5):367-370. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部