摘要
This paper presents an analysis and validation by advanced system simulation of compact and low-cost six-port transceivers for future wireless local area networks (WLANs) operating at millimeter-wave frequencies. To obtain realistic simulation results, a six-port model based on the measurement results of a fabricated V-band hybrid coupler, the core component, is used. A frequency-division multiplexing scheme is used by introducing four quadrature phase-shift keying (QPSK) channels in the wireless communication link. The data rate achieved is about 4 Gbit/s. The operating frequency is in the 60-64 GHz unlicensed band. Bit error rate (BER) results are presented, and a comparison is made between single-carrier and multicarrier architectures. The proposed wireless system can be considered an efficient candidate for millimeter-wave communication systems operating at quasi-optical data rates.
This paper presents an analysis and validation by advanced system simulation of compact and low-cost six-port transceivers for future wireless local area networks (WLANs) operating at millimeter-wave frequencies. To obtain realistic simulation results, a six-port model based on the measurement results of a fabricated V-band hybrid coupler, the core component, is used. A frequency-division multiplexing scheme is used by introducing four quadrature phase-shift keying (QPSK) channels in the wireless communication link. The data rate achieved is about 4 Gbit/s. The operating frequency is in the 60-64 GHz unlicensed band. Bit error rate (BER) results are presented, and a comparison is made between single-carrier and multicarrier architectures. The proposed wireless system can be considered an efficient candidate for millimeter-wave communication systems operating at quasi-optical data rates.