期刊文献+

一个时间分数阶扩散方程的参数反演问题 被引量:6

Parameters inversion for a time fractional diffusion equation
下载PDF
导出
摘要 研究了一维时间分数阶扩散方程中同时确定分数微分阶数与扩散系数的数值反演问题.基于对Caputo意义下时间导数的离散,提出了一个求解正问题的隐式差分格式.应用最佳摄动量正则化算法对所提参数反问题进行了数值模拟,讨论了正则参数、数值微分步长的选取对反演结果的影响.计算结果表明所提的参数反演问题具有数值唯一性. An inverse problem of determining differential order and diffusion coefficient simultaneously in a one-dimensional time fractional order diffusion equation is investigated. An implicit difference scheme for solving the forward problem is presented based on discretization of Caputo derivative. Furthermore, simulations of numerical inversion for the parameters determination are carried out by applying an optimal perturbation regularization algorithm and impacts of regularization parameter and numerical differential step on the inversion results are discussed. Inversion re sults show that the inverse problem studied in this paper is of numerical uniqueness.
出处 《山东理工大学学报(自然科学版)》 CAS 2010年第6期22-25,共4页 Journal of Shandong University of Technology:Natural Science Edition
基金 国家自然科学基金资助项目(10926194 11071148)
关键词 时间分数阶扩散方程 参数反演 最佳摄动量正则化算法 数值模拟 数值唯一性 Time fractional diffusion equation parameter inversion optimal perturbation regularization algorithm numerical simulation numerical uniqueness
  • 相关文献

参考文献7

  • 1Laudauer R, Woo J W F. Driving force in electro-migration [J].Phys. Rev. B, 1974, 10 (4): 1266
  • 2Das A K , Peierls S R. The force in electro-migration [J] . J Phys.C Solid Sta. Phys., 1975, 8 (11): 3348
  • 3Gupta R P, Serruys Y, Brebec G, et al. Calculation of the effective valence for electro-migration in niobium [J]. Phys. Rev. B, 1983,27 (2): 672
  • 4Paul S H and Thomas K. Electro-migration in metals [J]. Rep.Prog. Phys., 1989, 52 (1): 301
  • 5Cheng J, Nakagawa J, Yamamoto M, et al. Uniqueness in an inverse problem for a one-dimensional fractional diffusion equa- tion [J]. Inverse Problems, 2009, 25:1-16.
  • 6于强,刘发旺.时间分数阶反应-扩散方程的隐式差分近似[J].厦门大学学报(自然科学版),2006,45(3):315-319. 被引量:20
  • 7Lai Z H, Ma C X, Conrad H. Cyclic softening by high density electric current pulses during low cycle fatigue of a-Ti [J]. Scr.Metal. Mater., 1992, 5 (27): 527

二级参考文献12

  • 1卢旋珠,刘发旺.时间分数阶扩散-反应方程[J].高等学校计算数学学报,2005,27(3):267-273. 被引量:8
  • 2Wyss W.The fractional diffusion equation[J].Journal of Mathematical Physics,1986,27:2782-2785.
  • 3Schneider W R,Wyss W.Fractional diffusion and wave equations[J].Journal of Mathematical Physics,1989,30:134-144.
  • 4Liu F,Anh V,Turner I,et al.Time fractional advection-dispersion equation[J].Applied Mathematics and Computation,2003,13(1-2):233-246.
  • 5Huang F,Liu F.The time fractional diffusion and advection-dispersion equation[J].The ANZIAM Journal,2005,46(3):317-330.
  • 6Lin Ran,Liu Fawang.Analysis of Fractional-Order Numerical Method for the Fractiona1 Relaxation Equation[M/CD].Computational Mechanics,(R-362),Tsinghua University & Springer-Verlag,2004.
  • 7Diethelm Kai,Ford Neville J,Freed Alen D.Detailed error analysis for a fractional Adams method[J].Numerical Algorithms,2004,36(1):31-52.
  • 8Liu F,Anh V,Turner I.Numerical solution of the space fractional Fokker-Planck Equation[J].Journal of Computational and Applied Mathematics,2004,166:209-219.
  • 9Liu F,Anh V,Turner I,et al.Numerical simulation for solute transport in fractal porous media[J].The ANZIAM Journal,2004,45(E):461-473.
  • 10Liu F,Shen S,Anh V,et al.Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation[J].The ANZIAM Journal,2005,46(E):488-504.

共引文献20

同被引文献56

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部