期刊文献+

一种新的非线性离散时间系统的模糊辨识方法

Novel fuzzy identification scheme for nonlinear discrete-time systems
下载PDF
导出
摘要 对一类非线性离散时间系统提出一种新的模糊的辨识方法。该方法在假设逼近误差界已知的情况下,基于死区函数对模糊逻辑系统中的未知参数设计自适应学习律;在逼近误差界未知的情况下,基于时变死区函数对模糊逻辑系统中的未知参数设计自适应学习律,并对时变死区进行自适应调节。证明了所设计的自适应学习律均可使辨识误差收敛到原点的一个小邻域内。仿真结果表明了该算法的有效性。 A novel fuzzy identification scheme is presented for a class of nonlinear discrete-time systems.When the bound of approximation error is known,based on dead-zone function,the adaptive law for the unknown parameters in fuzzy logic system is designed.In the case of the bound of approximation error is unknown,based on time-varying dead-zone function,the adaptive law for the unknown parameters in fuzzy logic system is developed,and the size of time-varying dead-zone is adjusted adaptively.It is proved that the all designed adaptive law can make the identification error converge to a small neighborhood of the origin.Simulation results indicate the effectiveness of this method.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第30期44-46,93,共4页 Computer Engineering and Applications
基金 天津市自然科学基金(No.10JCYBJC07400)
关键词 非线性离散系统 模糊辨识 自适应律 逼近误差 nonlinear discrete-time systems fuzzy identification adaptive law approximation error
  • 相关文献

参考文献10

  • 1Chang Wei-Der.Nonlinear system identification and control using a real-coded genetic algorithm[J].Applied Mathematical Modelling, 2007,31 (3) : 541-550.
  • 2Milanese M,Novara C.Structured set membership identification of nonlinear systems with application to vehicles with controlled suspension[J].Control Engineering Practice, 2007,15 ( ! ) : 1-16.
  • 3Takagi T, Sugeno M.Fuzzy Identification of systems and its ap- plications to modeling and control[J].IEEE Trans on Systems, Man,and Cybern, 1985, SMC-15( 1 ) : 116-132.
  • 4Wang L X.Adaptive fuzzy systems and control-design and sta- bility analvsis[Ml.New Jersey:Prentice Ha11,1994.
  • 5Li Ning, Liao Qian-Fang, Hu Xue-Cong.Type-II T-S fuzzy mod- eling for SCR flue gas denitration[J].Intemational Journal of Mod- elling.Identification and Control, 2010,9 (1/2) : 199-205.
  • 6廖龙涛,李少远,黄广斌.规则可生长与修剪的非线性系统T-S模糊模型辨识[J].自动化学报,2007,33(10):1097-1100. 被引量:12
  • 7Yang Li Wei,Yupu.Hybrid kernel learning via genetic optimiza- tion for T-S fuzzy system identification[J].Intemational Journal of Adaptive Control and Signal Processing, 2010,24 ( 1 ) : 12-19.
  • 8Mehrdad H, Saeed G.Hybrid adaptive fuzzy identification and con- trol of nonlinear systems[J].IEEE Trans on Fuzzy Systems,2002, 10(2) : 198-210.
  • 9Wang M, Chen B, Dai S L.Direct adaptive fuzzy tracking con- trol for a class of perturbed strict-feedback nonlinear systems[J]. Fuzzy Sets and Systems,2007,158:2655-2670.
  • 10师五喜,王磊.一类非线性离散时间系统的模糊辨识[J].计算机工程与应用,2009,45(8):62-63. 被引量:1

二级参考文献19

  • 1Wang L X.Stable adaptive fuzzy control of nonlinear systems[J]. IEEE Trans on Fuzzy Systems, 1993,1 (2) : 146-155.
  • 2Tong Shao-cheng,Li Han-xiong.Direct daptive fuzzy output tracking control of nonlinear systems[J].Fuzzy Sets and Systems,2002, 128 (1):107-115.
  • 3Labiod S,Boucherit M S, Guerra Th M.Adaptive fuzzy control of a class of MIMO nonlinear systems[J].Fuzzy Sets and Systems,2005,151 (1):59-77.
  • 4Wang J,Rad A B,Chan P T.Indirect adaptive fuzzy sliding mode control:Part I: fuzzy switching[J].Fuzzy Sets and Systems,2001,122 (1):21-30.
  • 5Jagannathan S,Vandegrift M W,Lewis F L.Adaptive fuzzy logic control of discrete-time dynamical systems[J].Automatica,2000,36 (2) : 229-241.
  • 6Nounou H N,Passin K M.Stable auto-tuning of adaptive fuzzy/neural controllers for nonlinear discrete-time systems[J].IEEE Trails on Fuzzy Systems, 2004,12( 1 ) : 70-83.
  • 7Goodwin G C,Sin K &Adaptive filtering,predictive and control[M]. EnglewoodCliffs, NJ: Prentice Hall, 1984 : 82-102.
  • 8Takagi T,Sugeno M.Fuzzy identification of systems and its applications to modeling and control.IEEE Transactions on Systems,Man,and Cybernetic,1985,15(1):116-132
  • 9Ying H.Sufficient conditions on uniform approximation of multivariate functions by general Takagi-Sugeno fuzzy systems with linear rule consequent.IEEE Transactions on Systems,Man,and Cybernetic,1998,28(4):515-520
  • 10Setnes M.Supervised fuzzy clustering for rule extraction.IEEE Transactions on Fuzzy Systems,2000,8(4):416-424

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部