期刊文献+

关于二阶代数免疫布尔函数的几个结果

Some results on Boolean functions with two order algebraic immunity
下载PDF
导出
摘要 关于布尔函数的代数免疫性与弹性、代数次数、非线性度之间的关系的结果至今仍然很少,饱和最优布尔函数在流密码领域具有较高的理论价值,通过计算证明文献[1]中命题8给出的5元最优布尔函数都是2阶代数免疫函数,并在此基础上对这个结果做了进一步推广。 The properties of Boolean functions such as resiliency order,algebraic immunity,algebraic,nonlinearity,and the relationships among them are still small.The satured Best Boolean functions are important in stream ciphers,in this paper,it is demonstrated that the 5-variable satured Best Boolean functions are 2-order algebraic immunity,which are given in lemma 8 of reference [1],based on this result,it is improved.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第30期68-71,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60873191 No.60903152 No.61003286 No.60821001 河南省教育厅自然科学研究计划基金项目(No.2011B110010) 河南省科技创新杰出青年计划基金项目(No.084100510013) 新乡学院科技创新基金资助项目~~
关键词 布尔函数 饱和最优函数 零化子 代数免疫 Boolean function satured Best functions annihilator algebraic immunity
  • 相关文献

参考文献6

二级参考文献72

  • 1张文英,武传坤,刘祥忠.代数免疫阶最高的Boole函数的构造和计数[J].中国科学(F辑:信息科学),2009,39(7):687-693. 被引量:8
  • 2张文英,武传坤,于静之.密码学中布尔函数的零化子[J].电子学报,2006,34(1):51-54. 被引量:16
  • 3L R Knudsen.Truncated and higher order differentials[A].Fast Software encryption,Second International Workshop[C].Lecture Notes in Computer Science,Springer-Verlag,vol.1008,1995.196-211.
  • 4X Lai.Higher order derivatives and differential cryptanalysis[A].Proc.Symposium on Communication,Coding and Cryptography[C].In honor of J L Massey on the occasion of his 60'th birthday,1994.
  • 5A Menezes.P van Oorschot.S Vanstone.Handbook of Applied Cryptography[M].Boca Taton,FL:CRC Press on Discrete Mathematics and Its Applications,1996.
  • 6C Carlet.On cryptographic complexity of Boolean functions[A].in Proc.6th Conf Finite Fields with Applications to Coding Theory,Cryptography and Related Areas[C].G L Mullen,H Stichtenoth,H Tapis-Recillas,Eds.Springer,2002.53-69.
  • 7C Carlet.On the algebraic thickness and nonnormality of Boolean functions[A].in Proc.2003 IEEE Information Theory Workshop[C].Paris,France,2003.147-150.
  • 8C Carlet.On the degree,nonlinearity,algebraic thickness and nonnormality of Boolean functions,with developments on symmetric functions[J].IEEE Transactions on Information Theory,2004,50(9):2178-2185.
  • 9J Maiorana.A classification of the cosets of the Reed-Muller code R(1,6)[J].Mathematics of Computation,1991,57:403-414.
  • 10BRAEKEN A, PRENEEL B. On the algebraic immunity of symmetric Boolean functions[A]. Progress in Cryptology-Indocrypt 2005[C]. Berlin: Springer-Verlag, 2005.35-48.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部