期刊文献+

改进的人工免疫垃圾邮件过滤算法 被引量:2

Improved artificial immune algorithm applied for spam filtering
下载PDF
导出
摘要 针对AISEC模型中自体库和基因库生成效率不高的弊端,提出基于词频和MI互信息的自体库和基因库生成算法,同时对自体库和基因库的更新策略进行改进。实验结果表明,应用改进后的算法至少可以将邮件分类时间缩短10%,同时在虚报率方面得到了明显改善。 AISEC model is not so effective in generation of self library and gene library.It improves the efficiency of self library and gene library generation by adding MI and the frequency of words,and improves the auto-update strategy of self library and gene library.Experiments show that the improved algorithm can reduce at least 10% of the time,and can reduce the fallout rate.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第30期72-74,共3页 Computer Engineering and Applications
基金 南京工业职业技术学院科研基金(No.YK10-02-16)
关键词 人工免疫 垃圾邮件 自体库 基因库 artificial immune spam self library gene library
  • 相关文献

参考文献9

二级参考文献50

  • 1王斌,潘文锋.基于内容的垃圾邮件过滤技术综述[J].中文信息学报,2005,19(5):1-10. 被引量:129
  • 2张泽明,罗文坚,王煦法.一种基于人工免疫的多层垃圾邮件过滤算法[J].电子学报,2006,34(9):1616-1620. 被引量:16
  • 3李翔鹰,叶枫.一种基于多贝叶斯算法的垃圾邮件过滤方法[J].计算机工程与应用,2006,42(31):114-116. 被引量:7
  • 4王涛,裘国永,何聚厚.基于改进Nave Bayes的垃圾邮件过滤模型研究[J].计算机工程与应用,2007,43(13):186-190. 被引量:10
  • 5Carreras X,Marquez L. Boosting trees for anti-spam entail filtering[C]// Proceedings of Euro Conference Recent Advances in NLP( RANLP - 2001 ) ,Sep 2001:58-64.
  • 6Friedman N, Kohavi R. Bayesian classification [ M ]//Klosgen W ,Zytkow J M. Handbook of data mining and knowledge discovery. [ S.l.] : Oxford University Press,2002:282-288.
  • 7Twycross J. An immune system approach to document classification, HPL-2002-288 [ R ]. HP Labs, Bristol, UK ,2002.
  • 8Forrest S,Perelson A, Allen L, et al. Self-nonself discrimination in a computer[ C ]//Proceedings IEEE Symposium on Research in Security and Privacy. Los Alamitos, CA: IEEE Computer Society Press, 1994 : 202-212.
  • 9Matzinger P. Tolerance, danger and the extended family [ J ]. Annual Reviews in Immunology, 1994, 12:991 - 1045.
  • 10Matzinger P. The danger model in its historical context [ J ]. Scand J Immunol,2001 ,54:4-9.

共引文献15

同被引文献16

  • 1刘凤玲,杨广明,王欣艳,刘莹.ARTIS人工免疫模型在邮件过滤中的研究与应用[J].小型微型计算机系统,2007,28(7):1293-1296. 被引量:3
  • 2Gansterer W, Ilger M, Neumayer P, et al. Anti-spam methods state-of-the-art[D]. Vienna:Faculty of Computer Science, University of Vienna, 2005 : 1-99.
  • 3Marsono M N, E1-Kharash M W, Gebali F. Targeting spam control on middle boxes: spam detection based on layer-3 e-mail content classification[J]. Computer Networks, 2009,53 (6) : 835-848.
  • 4Mehmet A, Cigdem I, Mutlu A. Bayesian methods and genetic algorithm[J]. Expert Systems With Applications, 2010,37(7) : 5061-5067.
  • 5Yu B, Xu Z B. A comparative study for content-based dynamic spam classification using four machine learning algorithms[J]. Knowledge-Based Systems, 2008,21 (4) : 355-362.
  • 6Clark J, Koprinska I, Poon J. A neural network based approach to automated e-mail elassification[C]. Web Intelligence: Proceedings of the 2003 IEEE/WICInternational Conference on Web Intelligence, 2003:13-17.
  • 7Qing J J, Mao R L, Bie R F, et al. An AIS-based e-mail classification method[C]//The 2009 International Conference on Intelligent Computing, Ulsan, Korea, 2009 : 492-499.
  • 8Secker A, Freitas A, Timmis J. AISEC: an artificial immune system for e-mail classification[C]//The 2003 Congress on Evolutionary Computation, California, USA, 2003 : 131-138.
  • 9Zhang L, Zhu J B, Yao T S. An evaluation of statistical spam filtering techinques[J]. ACM Transactionson Asian Language Information Processing(TALIP), 2004,3 (4) : 243-269.
  • 10Guzella T S, Mota-Santos T A, Uchoa J Q, et al. Identification of SPAM messages using an approach inspired on the immune system[J]. Biosystems, 2008,92(3) 215-225.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部