期刊文献+

新型MFCC和波动模型相结合的二层环境声音识别 被引量:2

Two-layer environmental sounds recognition based on new MFCC and fluctuation pat-tern
下载PDF
导出
摘要 对生态环境中各种不同的声音进行快速准确的识别有重要的现实意义,但是因其具有较高背景噪声加大了识别的难度。提出一种具有良好抗噪能力和较高识别性能的两层音频识别技术。选择经过改进的新型的MFCC参数以及波动模型作为生态环境声音的特征集合。利用这种新型的MFCC系数构造音频信号的高斯分布模型,并且计算未知音频信号与样本音频信号的高斯分布模型之间的Kullback-Leibler距离,随后计算它们的波动模型之间的欧几里德距离。根据计算出的Kullback-Leibler距离和欧几里德距离实现两层音频识别系统。实验结果表明两层音频识别技术即使在噪声的影响下也能保持较高的识别率。 There are many kinds of sounds in the eco-environment and it is significant to recognize them quickly and accurately,but the recognition difficulty is greatly increased because of the background noise.Therefore,this paper presents a two-layer recognition technology which has good anti-noise ability and high recognition performance.Two kinds of features which are new improved MFCC and fluctuation pattern are selected as feature sets of the eco-environmental sound.The new MFCC parameters are used to construct single Gaussian distribution model and then the Kullback-Leibler distance between the unknown signal's Gaussian and the sample signal's Gaussian is measured and subsequently Euclidean distance between the sample signal's fluctuation pattern and the unknown signal's is calculated.The calculated Kullback-Leibler distance and the Euclidean distance can be used to achieve a two-layer system for environmental sound recognition.Experimental results show that the two-layer recognition technology can maintain a high recognition rate even under the influence of noise.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第30期132-135,139,共5页 Computer Engineering and Applications
基金 国家自然科学基金No.61075022 福建省教育厅A类科技项目(No.JA09021)~~
关键词 生态环境 声音识别 改进的Mel频率倒谱参数 波动模型 Kullback-Leibler距离 eco-environment sound recognition improved Mel-scaled Cepstrum Coefficients(MFCC) fluctuation pattern Kullback-Leibler distance
  • 相关文献

参考文献11

  • 1Nakamura S,Kumatani K, Tamura S.Multi-modal temporal asyn- chronicity modeling by product HMMs for robust audio-visual speech recognition[C]//Proceedings of the 4th IEEE Internation- al Conference on Multimodal Interfaces,2002: 305-309.
  • 2Pan Wenjuan, Yao Yong, Liu Zhijing, et al.Audio classification in a weighted SVM[C]//Intemational Symposium on Communica- tions and Information Technologies,2007:468-472.
  • 3Chandmkala 'S, Sekhar C C.Model based clustering of audio clips using Ganssian mixture models[C]//Seventh International Confer- ence on Advances in Pattern Recognition,2009:47-50.
  • 4Freeman G,Dony R D,Areibi S M.Audio environment classica- tion for heating aids using artificial neural networks with win- dowed input[C]//Computational Intelligence in Image and Signal Processing, 2007: 183-188.
  • 5Chu Selina,Narayanan S.Environmental sound recognition usingMP-based features[C]/flEEE International Conference on Acouties, Speech and Signal Processing(ICASSP 2008),2008.
  • 6Yeganeh FI,Ahadi S M, Ziaei A.A new MFCC improvement method for robust ASR[C]//9th International Conference on Sig- nal Processing,2008.
  • 7Zwicker E, Fastl H.Psychoaeoustics, facts and models[M].2ed. Berlin: Springer, 1999.
  • 8L Lidy T,Rauber A.Evaluation of feature extractors and psycho-acous- tic transformations[C]//Proceedings of the 6th International Con- ference on Music InformationRetrieval (ISMIR' 05 ), 2005 : 34-41.
  • 9Pampalk E.Audio-based music ing a spectral similarity model similarity and retrieval: combin- with information extracted from fluctuation pattems[C]//IT,AIST, 1-1-1 Umezono,Tsukuba,Ibara- ki 305-8568, Japan,2006.
  • 10Penny W D.Kullback-Liebler divergences of normal,gamma, Dirichlet and Wishart densities[R].Wellcome Department of Cog- nitive Neurology,2001.

同被引文献14

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部