期刊文献+

一类非对称Lienard系统的分支及稳定性

Bifurcations and stability for a class of non-symmetric Lienard equations
下载PDF
导出
摘要 研究了一类非中心对称的Lienard多项式系统的稳定性和分支问题。利用一阶Melnikov函数和Picard-Fuchs方程法,得到了Hopf分支、同宿分支以及二重闭轨分支的存在条件和分支曲线计算公式,在此基础上,结合数值方法给出了各种分支的分支图和相轨线结构。 The dynamics of a class of Lienard equations with non-symmetric terms are investigated.Using Melnikov function and Picard-Fuchs equation,conditions for the existence and the formula for calculating bifurcation values of Hopf,homoclinic orbit and double limit cycle bifurcations are derived.Moreover,the complete bifurcation diagrams and phase portraits are obtained.The results show that the double limit cycle bifurcations occur at the curve between two critical points if the system contains the non-symmetric terms.
作者 范丽 陈斯养
出处 《计算机工程与应用》 CSCD 北大核心 2011年第31期30-34,72,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.10871122 No.11026133) 中央高校基本科研业务专项资金项目(No.GK201002046)~~
关键词 LIENARD系统 振动系统 分支 非对称 Lienard equations vibrating system bifurcation non-symmetric
  • 相关文献

参考文献9

  • 1刘秉正.非线性力学和混沌[M].长春:东北师范大学出版社,1994:2.17.
  • 2Guckenheimer J, Holmes P.Nonlinear oscillations, dynamical sys- tems and bifurcations of vector fields[M].New York:Springer- Verlag, 1983 : 353-377.
  • 3Bogdanov R l.Versal deformation of a singularity of a vector field on the plane in case of zero eigenvalue[J].Functional Analysis and its Application, 1975,9(2) : 144-145.
  • 4Carr J.Applications of center manifold theory[M].New York:Springer-Verlag, 1981 : 1-30.
  • 5de Maesschalck P,Dumortier F.Classical li6nard equations of de- gree n>6 can have [n-1/2]+2 limit eycles[J].Journal of Differ- ential Equations,2011,250(4) :2162-2176.
  • 6陈芳跃.高次退化的非线性向量场分支[J].应用数学学报,1995,18(1):8-15. 被引量:8
  • 7脱秋菊,李学敏.一类平面多项式系统的全局结构与分岔[J].工程数学学报,2007,24(6):1056-1064. 被引量:4
  • 8赵丽琴,王琦.一类四次椭圆Hamilton向量场在三次多项式下的扰动[J].中国科学(A辑),2009,39(4):433-448. 被引量:8
  • 9Dumortier F, Li C.Perturbations from an elliptic Hamiltonian of degree four-IV figure eight-loop[J].Journal of Differential Equations, 2003,188 (2) : 512-554.

二级参考文献24

  • 1脱秋菊,李学敏.BIFURCATION OF A CLASS OF CODIMENSION-TWO NONLINEAR HIGHER ORDER SYSTEM[J].Annals of Differential Equations,2003,19(3):402-410. 被引量:1
  • 2陈芳跃.高次退化的非线性向量场分支[J].应用数学学报,1995,18(1):8-15. 被引量:8
  • 3Dumortier F, Li C. Perturbations from an elliptic Hamiltonian of degree four: Ⅰ. Saddle loop and two saddle cycle. J Differential Equations, 176: 114-157 (2001)
  • 4Dumortier F, Li C. Perturbations from an elliptic Hamiltonian of degree four: Ⅱ. Cuspidal Loop. J Differential Equations, 175:209-243 (2001)
  • 5Dumortier F, Li C. Perturbation from an elliptic Hamiltonian of degree four: Ⅲ global center. J Differential Equations, 188:473-511 (2003)
  • 6Dumortier F, Li C. Perturbation from an elliptic Hamiltonian of degree four:Ⅳ figure eight-loop. J Differential Equations, 188:512-554 (2003)
  • 7Zhao Y, Zhang Z. Linear Estimate of the Number of Zeros of Abelian Integrals for a Kind of Quartic Hamiltonians. J Differential Equations, 155:73-88 (1999)
  • 8Liu C. Estimate of the number of zeros of Abelian integrals for an elliptic Hamiltonian with figure-of-eight loop. Nonlinearity, 16:1151-1163 (2003)
  • 9Petrov G S. Complex zeros of an elliptic integral. Funct Anal Appl, 21:160- 161 (1987)
  • 10Petrov G S. Complex zeros of an elliptic integral. Funct Anal Appl, 23:247-248 (1989)

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部