期刊文献+

基于纹理和边缘的SAR图像多维SVM回归

Multi-dimensional SVM regression of SAR image based on texture and edge
下载PDF
导出
摘要 合成孔径雷达(SAR)图像ROI(Region of Interest)区域存在两种情况:只包含单一地物或由混合地物组成。对此,提出一种基于特征映射的SAR图像多维输出回归方法,该方法不仅能够对只包含单一地物的SAR图像进行类别判断,也能对混合地物区域的内容做出估计。首先对SAR图像提取基于灰度共生矩阵的纹理特征,然后构造了一组能够反映SAR图像边缘长度、方向和稀疏程度的边缘特征向量,最后利用纹理特征和边缘特征对SAR图像进行基于近似迭代变权最小二乘法(IRWLS)的多维支持向量机(Support Vector Machine,SVM)回归。实验结果表明,该方法能够对包含不同地物内容的ROI区域进行有效解译,正确率高。 For precisely recognizing and interpreting the content of Region of Interest(ROI) of SAR image,which contains either single or mixed geographical objects,a new multi-dimensional regression analysis method based on features-mapping is developed.It can not only classify SAR images containing single geographical objects,but also interpret the region of mixed geographical objects as well,which shows its practicability.It firstly extracts texture features based on gray level co-occurrence matrix from SAR image,and then constructs a set of vectors which can describe the length,the direction and the density of the edge of SAR image.These texture features are used for multi-dimensional Support Vector Machine(SVM) regression based on Iterative Re-Weight Least Square(IRWLS) at last.The experiment results demonstrate that this approach is effective for interpretation of ROI with various contents with high accuracy.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第31期175-178,共4页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)(No.2008AA121805-1)~~
关键词 合成孔径雷达(SAR)图像 多维SVM回归 纹理特征 灰度共生矩阵 边缘特征 图像解译 Synthetic Aperture Radar(SAR) image multi-dimensional Support Vector Machine(SVM) regression texture feature Gray Level Co-occurrence Matrix(GLCM) edge feature interpretation
  • 相关文献

参考文献13

  • 1Vijaya V, Dharmendra S.An analysis of texture measures in PCA-based unsupervised classification of SAR images[J].IEEE Transactions on Geoscience and Remote Sensing, 2009,47 (2) : 214-218.
  • 2Michael J, Jeremy M.Modeling and simulation of SAR image texture[J].IEEE Transactions on Geoscience and Remote Sens- ing, 2009,47(10) :3530-3546.
  • 3Balaguer A,Ruiz L A.Defmition of a comprehensive set of tex- ture smivariogram features and their evaluation for object-oriented image elassification[J].Computers & Geosciences,2010,36(2): 231-240.
  • 4Nemirovsky S, Porat M.On texture and image interpolation us- ing Markov models[J].Signal Processing:Image Communication, 2009,24:139-157.
  • 5Clausi D A.Comparison and fusion of co-occurrence, Gabor and MRF texture for classification of SAR sea ice imagery[J].Atmo- sphere Oceans,2001,39(4) : 183-194.
  • 6Clausi D A, Yue B. Comparing co-occurrence probabilities and markov random fields for texture analysis of SAR sea ice im- agery[J].IEEE Transactions on Geoseience and Remote Sensing, 2004,42 ( 1 ) : 215-228.
  • 7Kandaswamy U, Adjeroh D A, Lee M C.Efficient texture analy- sis of SAR imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(9) :2075-2083.
  • 8刘保利,田铮.基于灰度共生矩阵纹理特征的SAR图像分割[J].计算机工程与应用,2008,44(4):4-6. 被引量:10
  • 9胡召玲,李海权,杜培军.SAR图像纹理特征提取与分类研究[J].中国矿业大学学报,2009,38(3):422-427. 被引量:40
  • 10薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203

二级参考文献31

  • 1刘浩,郭华东.雷达图像纹理信息的提取及在地学分析中的利用─—以甘肃省黄羊镇地区SIR-B图像为例[J].环境遥感,1995,10(2):107-113. 被引量:9
  • 2赵银娣,张良培,李平湘.广义马尔可夫随机场及其在多光谱纹理影像分类中的应用[J].遥感学报,2006,10(1):123-129. 被引量:13
  • 3唐玮,朱华,王勇.分形和空间灰度共生矩阵联合评价断口形貌研究[J].中国矿业大学学报,2006,35(4):530-534. 被引量:11
  • 4ZHANG Jian-guo, TAN Tie-niu. Brief review of invariant texture analysis methods [J]. Pattern Recognition, 2002, 35(3): 735-747.
  • 5HARALICK R, SHANMU G K, DINSTEIN I. Texture features for image classification[J]. IEEE Transactions on Systems Man Cybernet, 1973, 3 (6) :610-621.
  • 6HEROLD N D, HAACK B N, SOLOMON E. An evaluation of Radar texture for land use/cover extraction in varied landscapes [J]. International Journal of Applied Earth Observation and Geoinformation, 2004, 5(2): 113-128.
  • 7WAL D V D, HERMAN P M J, DOOL A W. Characterisation of surface roughness and sediment texture of intertidal flats using ERS SAR imagery [J]. Remote Sensing of Environment, 2005, 98 (1) : 96- 109.
  • 8YAKOUB B, LORENZO B, FARID M. An unsu pervised approach based on the generalized Gaussianmodel to automatic change detection in multitemporal SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4):874-887.
  • 9BERBEROGLU S, CURRAN P J, LLOYD C D, et al. Texture classification of mediterranean land cover [J]. International Journal of Applied Earth Observation and Geoinformation, 2007, 9(3): 322-334.
  • 10J A Modestino,J Zhang.A markov random field model based approach to image interpretation[J].IEEE Tran On Pattern Analysis and Machine Intelligence,1992,14(6):606-615.

共引文献249

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部