期刊文献+

一种新的SAR图像无监督分割方法

New fusion algorithm for unsupervised SAR image segmentation
下载PDF
导出
摘要 马尔可夫随机场(MRF)在SAR图像分割中有着广泛的应用。由于合成孔径雷达(SAR)图像本身所固有的相干斑噪声的影响,传统方法很难获得准确的分割,因此提出了一种新的基于MRF(Markov Random Field)融合Gaussian-Hermite矩(GHM)的SAR图像无监督分割算法。利用Gaussian-Hermite矩的不同阶矩作为SAR图像特征得到初始分割;将得到的初始分割结果作为MRF随机场的先验模型,通过引入一个基于两成分权重参数的能量函数,利用最大后验概率(MAP)得到最终的分割结果。通过对合成图像及SAR图像分割实验结果的比较,表明了该方法在误分率、抗噪性以及视觉效果上具有更好的效果。 Markov Random Field(MRF) has lots of applications in SAR image segmentation.Because of the multiplication nature of speckle noise in SAR image,it is hard to get accurate segmentation,in this paper,a new fusion algorithm for unsupervised SAR image segmentation based on Markov Random Field(MRF) with Gaussian-Hermite Moments(GHM) is proposed.It gets initial segmentation with different orders of Gaussian-Hermite moments as SAR image features.Then,the first result can be as initial MRF model,by introducing an energy function-based weighting parameter between the two components,the accurate result is achieved by Maximum A Poteriori(MAP).The proposed method applied in synthetic image and SAR image segmentation,and experimental results show that it performs well in miss-classification ratio,restraining the speckle noise,and performation in vision.
作者 刘丽丽
出处 《计算机工程与应用》 CSCD 北大核心 2011年第31期185-188,205,共5页 Computer Engineering and Applications
关键词 合成孔径雷达(SAR) 马尔可夫随机场(MRF) GAUSSIAN-HERMITE矩 最大后验概率(MAP) Synthetic Aperture Radar(SAR) Markov Random Field(MRF) Gaussian-Hermite Moments(GHM) Maximum A Poterior(iMAP)
  • 相关文献

参考文献11

  • 1Shen J, Shen W, Shen D F.On geometric and orthogonal mo- ments[J].Intemational Journal of Pattern Recognition and Artifi- cial Intelligence,2000,14(17) :875-894.
  • 2孙莉,张艳宁,李映,马苗.一种基于Gaussian-Hermite矩的SAR图像分割方法[J].西北工业大学学报,2007,25(3):438-441. 被引量:1
  • 3Geman S, Geman D, Stochastic relaxation Gibbs distributions, and the Bayesian restoration of images[J].lEEE Trans Pattern Analysis and Machine Intelligence, 1984,6(6) :721-741.
  • 4Derin H, Elliot H.Modeling and segmentation of noisy and tex- tured images using Gibbs random field[J].IEEE Trans on Pat- tern Analysis and Machine Intelligence, 1987,9( 1 ) : 39-55.
  • 5王林,戴模.基于Gaussian-Hermite矩的指纹奇异点定位[J].软件学报,2006,17(2):242-249. 被引量:9
  • 6Li S Z.Markov random field modeling in computer vision[M]. New York: Springer-Verlag, 2001.
  • 7Deng H, Clausi D A.Unsupervised image segmentation using a simple MRF model with a new implementation scheme[C]// Proc 17th Int Conf Pattern Recognition, 2004,2 ~ 691-694.
  • 8Deng H,Clausi D A.Unsupervised segmentation of synthetic ap-erture radar sea ice imagery using a novel markov random ri- eld model[J].IEEE Trans on Geoscience and Remote Sensing, 2005,43 (3) :528-538.
  • 9张翠,郦苏丹,王正志.基于MRF场的SAR图像分割方法[J].遥感技术与应用,2001,16(1):66-68. 被引量:15
  • 10Lankoande O, Hayat M M, and Santhanam B.Speckle reduc- tion of SAR images using a physically based Markov ran- dom field model and simulated armealing[C]//Proc of SPIE, 2005,5808: 210-221.

二级参考文献26

  • 1王林,戴模.基于Gaussian-Hermite矩的指纹奇异点定位[J].软件学报,2006,17(2):242-249. 被引量:9
  • 2高贵,计科峰,匡纲要,李德仁.基于各向异性热扩散方程的SAR图像分割方法[J].信号处理,2006,22(1):105-109. 被引量:7
  • 3Nilsson K,Bigun J.Localization of corresponding points in fingerprints by complex filtering.Pattern Recognition Letters 2003,24(13):2135-2144.
  • 4Shen J,Shen W,Shen DF.On geometric and orthogonal moments.Int'l Journal of Pattern Recognition and Artificial Intelligence,2000,14(7):875-894.
  • 5Wang L,Dai M,Geng GH.Fingerprint image segmentation by energy of Gaussian-Hermite moments.In:Li SZ,Lai J,Tan T,Feng G,Wang Y,eds.Proc.of the 5th Chinese Conf.on Biometric Recognition,Advances in Biometric Person Authentication.LNCS 3338,Beilin:Springer-Verlag,2004.414-423.
  • 6Karu K,Jain A.Fingerprint classification.Pattern Recognition,1996,29(3):389-404.
  • 7Boer J,Bazen A,Cerez S.Indexing fingerprint database based on multiple feature,In:Proc.of the ProRISC 2001 Workshop on Circuits,Systems and Singal Processing 2001.http://utelnt.el.utwente.nl/links/gerez/publications/pslist.html
  • 8Nagaty KA.Fingerprint classification using artificial neural networks:A combined structural and statistical approach.Neural Networks,2001,14(9):1293-1305.
  • 9Perona P.Orientation diffusions.IEEE Trans on Image Processing,1998,7(3):457-467.
  • 10Jain AK,Prabhakar S,Hong L,Pankanti S.Filterbank-Based fingerprint matching.IEEE Trans on Image Processing,2000,9(5):846-859.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部