期刊文献+

饱和非线性时滞系统约束预测控制

Constrained model predictive control for nonlinear system subject to actuator saturation
下载PDF
导出
摘要 针对一类具有执行器饱和与输出约束的离散非线性时滞系统,提出新的模糊预测控制方法。首先,采用T-S模糊模型来逼近实际非线性系统,运用平行分步补偿(PDC)原理将该系统转化为一系列线性系统的凸组合。其次,通过每个采样时刻优化无穷时域的"min-max"性能指标来求解状态反馈预测控制器,得到系统满足Lyapunov渐近稳定的充分条件,并进一步将该条件转化为基于线性矩阵不等式(LMI)技术的半正定规划(SDP)问题。最后,通过数值仿真验证该方法的有效性。 Aiming at a class of discrete-time nonlinear systems subject to actuator saturation and output constraint,a novel fuzzy predictive control method is proposed in this paper.Firstly,the approximation of a practical nonlinear system is realized by utilizing the T-S fuzzy model.Then,the above system is further converted into convex combinations of a series of linear subsystems by Parallel Distributed Compensation(PDC) scheme.Secondly,a state feedback predictive controller is obtained by optimizing an infinite time"min-max"performance index at each sampling instant.A sufficient condition for the Lyapunov asymptotical stability is obtained and it is further transformed into positive Semi-definite Programming(SDP)which can be easily solved by means of Linear Matrix Inequality(LMI).Finally,the availability and feasibility of the proposed method are both verified by specific numerical examples,respectively.
作者 徐莉 刘飞
出处 《计算机工程与应用》 CSCD 北大核心 2011年第31期245-248,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60974001)~~
关键词 离散非线性系统 时滞 T-S模糊模型 执行器饱和 输出约束 discrete-time nonlinear systems time-delay T-S fuzzy model actuator saturation output constraint
  • 相关文献

参考文献11

  • 1Hu T S,Lin Z L,Chen B M.Analysis and design for discrete- time linear systems subject to actuator saturation[J].Systems & Control Letters,2002,45(2) :97-112.
  • 2Hu T S, Lin Z L, Chen B M.An analysis and design method for linear systems subject to actuator saturation and disturbance[J]. Automatica,2002,38(2) :351-359.
  • 3Cao Y Y,Lin Z L,Hu T S.Stability analysis of linear time- delay systems subject to input saturation[J].IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applica- tions, 2002,49(2) : 233-240.
  • 4Wei A R, Zhao K Y, Yu H S.Analysis and design of uncertain time-delay systems subject to actuator[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation, Da- lian, China, 2006.
  • 5吴科,李伟华.扩展T-S模糊模型的PSO神经网络优化算法[J].计算机工程与应用,2010,46(35):238-241. 被引量:2
  • 6Wen J W, Liu F.Robust model predictive control for fuzzy sys- tems subject to actuator saturation[J].IEEE Trans Fuzzy Sys- tems, 2009,6(3) : 400-404.
  • 7薛梅,李凌云,王文胜,杨文潮.基于新模糊系统与T-S模糊系统的比较与研究[J].计算机工程与应用,2009,45(22):44-46. 被引量:2
  • 8Wu H N.Reliable LQ fuzzy control for nonlinear discrete-time systems via LMIs[J].IEEE Trans on Systems,Man,and Cybemet- ics:Part B,Cybemetics,2004,34(2) : 1270-1275.
  • 9Zhang H B, Dang C Y, Zhang J.Decentralized fuzzy H filter- ing for nonlinear interconnected systems with multiple time de- lays[J].IEEE Trans on Systems, Man, and Cybernetics, 2010, 40 (4) : 1197-1203.
  • 10Cao Y Y, Lin Z L, Shamash Y.Set invariance analysis and gain-scheduling control for LPV systems subject to actuator saturation[J].Systems and Control Letters, 2002,46 (2) : 137-151.

二级参考文献10

  • 1Kennedy J. Eberhart R C.Particle swarm optimization[C]//Proc of the IEEE Conf on Neural Networks IV.Perth:IEEE Press,1995: 1942-1948.
  • 2Takagi T, Sugeno M.Fuzzy identification of systems and its applications to modeling and control[J].IEEE Trans System Man and Cyb, 1985,15(1) : 116-132.
  • 3Lin C J, Hong S J.The design of neuro-fuzzy networks using particle swarm optimization and recursive singular value decomposition[J].Neurocomputing, 2007,71 ( 1/2/3 ) : 297-310.
  • 4Chatterjee A,Siarry P. Nonlinear inertia weight variation for dynamic adaptation in panicle swarm optimization[J].Computers and Operations Research, 2006,33 ( 3 ) : 859-871.
  • 5Mukherjee V, Ghoshal S P.Intelligent particle swarm optimized fuzzy PID controller for AVR system[J].Electric Power Systems Reasearch, 2007,77 ( 12 ) : 1689-1698.
  • 6Clerc M, Kennedy J.The particle swarm:Explosion stability and convergence in a multi-dimensional complex space[J].IEEE Trans on Evolution Computer,2002,6( 1 ) :58-73.
  • 7李湘萍.一种用于结构优化设计的LFCGA-BP计算智能方法[D].南京:南京航空航天大学,2005:57-74.
  • 8殷艺云,郭海丁.基于粒子群神经网络的轮盘优化[J].航空动力学报,2007,22(9):1578-1582. 被引量:13
  • 9刘福才,关新平,裴润.基于一种新模糊模型的非线性系统模糊辨识[J].控制理论与应用,2003,20(1):113-116. 被引量:15
  • 10吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:453

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部