期刊文献+

基于方差和峭度的模拟电路故障诊断 被引量:5

The Analog Circuit Fault Diagnosis Based on Variance and Kurtosis
下载PDF
导出
摘要 针对非线性容差电路故障诊断过程中存在的故障特征提取难的问题,结合小波包分析理论,提出了利用二阶统计量和高阶统计量来描述故障信息的故障特征提取方法,即方差和峭度法,并运用支持向量机作为分类器,形成了一种模拟电路故障诊断的新方法.仿真结果表明,该法能有效的提取故障特征,故障诊断率较高. For the problem that it is difficult to extract features when diagnosis the nonlinear and tolerance fault circuits,combined with wavelet packet analysis theory,a fault feature extraction method which used the second-order statistics and the higher-order statistics to describe the fault information was presented,the variance and kurtosis method.By using support vector machine as classifier,it finally formed a new method for the analog circuit fault diagnosis.Simulation results showed that the method can be effective to extract the fault features and has a high accuracy in fault diagnosis.
作者 吴宏天 刘辉
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2011年第5期32-36,共5页 Journal of Natural Science of Hunan Normal University
基金 湖南省教育厅科研基金资助项目(10C0922)
关键词 小波包变换 方差 峭度 支持向量机 wavelet packet transform variance kurtosis SVM
  • 相关文献

参考文献9

  • 1AMINIAN F. Analog fault diagnosis of actual circuits using neural networks [J]. IEEE Trans. Instr Measu, 2002, 51 (3) : 544-550.
  • 2YUAN L F, HE Y G. A new neural-network-based fault diagnosis approach for analog circuits by using kurtosis and entropy as a preprocessor[ J ]. IEEE Trans. Instr Measu, 2010,59 (3) :522-528.
  • 3SHEN H, TANG J Y. Analog circuit fault diagnosis combing wavelet packet with higher order statistics [ C ]. 2010 2nd Interna- tional Conference on Signal Processing Systems. Dalian, China, 2010.
  • 4DIMOPOULOS M G; PAPAKOSTAS D K. Wavelet energy-based testing using supply current measurements [ J ]. IET Measur Tech, 2010(4) :76-85.
  • 5何海平,计时鸣,张利.基于高阶统计量的信号分析与处理[J].机电工程,2003,20(5):85-86. 被引量:8
  • 6NIKIAS C L, MENDEL J M. Signal processing with higher-order spectra[J]. IEEE Trans. Sign Proces,1993, 10: 10-37.
  • 7唐静远,师奕兵,张伟.基于支持向量机集成的模拟电路故障诊断[J].仪器仪表学报,2008,29(6):1216-1220. 被引量:30
  • 8LONG B, HUANG J G. Least squares support vector machine based analog circuit fault diagnosis using wavelet transform as preprocessor[ C]. ICCCAS 2008. Beijin, China, 2008.
  • 9宋国明,王厚军,刘红,姜书艳.基于提升小波变换和SVM的模拟电路故障诊断[J].电子测量与仪器学报,2010,24(1):17-22. 被引量:36

二级参考文献22

  • 1王承,陈光,谢永乐.小波-神经网络在模拟电路故障诊断中的应用[J].系统仿真学报,2005,17(8):1936-1938. 被引量:34
  • 2袁海英,陈光.模拟电路的可测性及故障诊断方法研究[J].电子测量与仪器学报,2006,20(5):17-20. 被引量:17
  • 3段晨东,何正嘉.一种基于提升小波变换的故障特征提取方法及其应用[J].振动与冲击,2007,26(2):10-13. 被引量:20
  • 4CATELANI M, FORT A. Soft fault diagnosis and isolation in analog circuits: some results and a comparison between a fuzzy approach and radial basis function networks [J]. IEEE Trans. Instrumentation. & Measurement. 2002, 51(2): 196-202.
  • 5AMINIAN M and AMINIAN E Neural-network based analog-Circuit fault diagnosis using wavelet transform as processor [J]. IEEE Transactions on Circuits and System II: Analog and Digital signal processing, 2000, 47(2): 151-156.
  • 6HE Y G TAN Y H, SUN Y C. Fault diagnosis of analog circuits based on wavelet packets[C]. TENCON 2004 IEEE Region 10 Conference, 2004: 267-270.
  • 7LONG B, HUANG J G, TIAN S L. Least squares support vector machine based analog circuit fault diagnosis using wavelet transform as preprocessor[C]. ICCCAS 2008, China, May 25-27, 2008: 1026-1029.
  • 8LIAO H Y, MRINAL K M. Efficient architectures for 1-d and 2-d lifting-based wavelet transforms [J]. IEEE Trans. on Signal Processing, 2004, 52(5): 1315-1326.
  • 9GUO C H, WANG T Q, YE J Y, et al. Retinal images fusion based on lifting wavelet transform[C]. 7th World Congress on Intelligent Control and Automation, China, June 25-27, 2008: 8511-8515.
  • 10HSU C W AND LIN C J. A comparison of methods for multiclass support vector machines [J]. IEEE Transactions on Neural Networks, 2002,13(2): 415-425.

共引文献69

同被引文献47

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部