摘要
本文讨论下述带参数的奇异三阶三点边值问题■其中γ>0是参数且a(t)在t=0和t=1处具有奇性,当f和a满足适当条件时,对一定取值范围内的γ,获得了上述边值问题正解的存在性与不存在性.所用主要工具是Guo-Krasnoselskii不动点定理.
The problem discussed in this paper is singular third-order three-point boundary value with a parameter. It is described as follows:{u″+λa(t)f(u(t))=0,t∈(0,1),u(0)-au′(0)=u′(P)=βu′(1)+λu″(1)=0,where a (t) will be si and the value of A is ngular when t=0 and t=1, and A (λ〉0)is a parameter. Whenfand a satisfy appropriate conditions, limited in certain range (e.g.λ〉0), we can determine the existence or non-existence of positive solutions to the above problem. The main way used in this paper is the Guo-Krasnoselskii fixed point theorem.
出处
《河西学院学报》
2011年第5期4-10,共7页
Journal of Hexi University
基金
国家自然科学基金(10801068)
关键词
边值问题
正解
奇异
存在性
不动点定理
Boundary value problem
Positive solution
Singular
Existence
Fixed point theorem