期刊文献+

基于混合逻辑动态的过程控制实验装置故障检测

Fault Detection of Experimental Unit for Process Control Based on Mixed Logical Dynamical
下载PDF
导出
摘要 通过将故障表示为二进制变量建立混合逻辑动态故障模型,利用滚动时域估计(MHE)方法将故障检测问题转化为混杂预测控制问题。将基于MHE的故障检测方法用于三容水箱过程实验装置进行故障检测仿真研究,建立了实验装置在执行器部件故障下的混合逻辑动态(MLD)模型,研究了利用MHE对实验装置进行状态估计和故障检测的方法。对其中产生的混合整数二次规划问题则利用改进的离散微粒群(DPSO)算法进行求解。控制结果和故障检测结果表明了本文算法的有效性,更有助于对预测控制算法和故障检测技术的理解与应用。 In this paper, faults are modeled as binary variables, and a mixed logical dynamical (MLD) fault model is developed. Fault detection problem is then converted to a hybrid predictive control problem by using the moving horizon estimation(MHE) method. The MHE algorithm is applied to a three tank experimental unit. The MLD model with actuator faults is developed, and state estimation and faults detection are investigated. The mixed integer quadratic programming problem is solved by using an improved discrete particle swarm optimization (DPSO) algorithm. The control results and fault detection results show effectiveness of the MHE algorithm. It can help understand the predictive control algorithm and fault detection.
出处 《上海电机学院学报》 2011年第5期296-301,310,共7页 Journal of Shanghai Dianji University
基金 教育部科学技术研究重点项目资助(108160)
关键词 粒子群算法 预测控制 混合逻辑动态 故障检测 滚动时域估计 particle swarm optimization predictive control mixed logical dynamical(MLD) fault detection moving horizon estimation(MHE)
  • 相关文献

参考文献15

  • 1Bemporad A, Morari M. Control of systems in- tegrating logic, dynamics, and constraints[J]. A- utomatica, 1999,35(3) : 407-427.
  • 2陈敏泽,周东华.动态系统的故障预报技术[J].控制理论与应用,2003,20(6):819-824. 被引量:32
  • 3Carvalho A B, Pozo A, Vergilio S R. A symbolic fault-prediction model based on muhiobjective pa- rticle swarm optimization[J]. Journal of Systems and Software, 2010,83(5): 868-882.
  • 4Catal C, Diri B. A systematic review of software fault prediction studies[J]. Expert System with A- pplications, 2009,36(4) : 7346-7354.
  • 5Hou Shumin, Li Yourong. Short-term fault prediction based on support vector machines with parameter opti- mization by evolution strategy[J]. Expert Systems with Application, 2009,36(10) : 12383-12391.
  • 6Rajakarunakaran S. Venkumar P, Devaraj D, et al. Artificial neural network approach for fault de- tection in rotary system[J]. Applied Soft Compu- ting, 2008,8(1): 740-748.
  • 7Rao C V, Rawlings J B. Constrained linear state estimation--a moving horizon approach [J]. Auto- matica, 2001,37(10):1619-1628.
  • 8Kahi P, Diehi M, Kraus T, et al. A real-time al- gorithm for moving horizon state and parameter es- timation[J]. Computers & Chemical Engineering, 2011,35(1) : 71-83.
  • 9Zavala V M, Laird C D, Biegler L T. A fast mov- ing horizon estimation algorithm based on nonlinear programming sensitivity [J]. Journal of Process Control, 2008,18(9): 876-884.
  • 10Tyler M, Morari M. Application of moving horizon estimation based fault detection to code tandem steel mill [J]. International Journal of Control, 2000,73(5) : 427-438.

二级参考文献44

  • 1[1]BEARD R V. Failure accommodation in linear systems through selfreorganization [ R]. Cambridge Massachusetts: Man Vehicle Lab,MIT, 1971.
  • 2[2]MEHRA R K, PESCHON J. An innovafon approach to fault detection and diagnosis in dynamics [J]. Automatica, 1971,7(5): 637 -640.
  • 3[3]WILLSKY A S. A survey of design methods for failure detection in dynamic systems [J]. Automatica, 1976,12(6): 601-611.
  • 4[4]HIMMELBLAU D M. Fault Detection and Diagnosis in Chemical and Petrochemical Process [ M]. Amsterdam: Elsevier Press, 1978.
  • 5[5]GERTLER J J. Survey of model based failure detection and isolation in complex plants [ J ]. IEEE Control Systems Magazine, 1988, 8(6) :3 - 11.
  • 6[6]ISERMANN R. Process fault detection based on modeling and estimation methods: a survey [J]. Automatica, 1984,20(4):387-404.
  • 7[7]FRANK P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new results[J]. Automatica, 1990, 26(3):459-474.
  • 8[8]ISERMANN R. Fault diagnosis of machines via parameter estimation and knowledge processing-tutorial paper [J]. Automatica, 1993,29(4): 815 - 835.
  • 9[9]PATTON R, et al. Fault Diagnosis in Dynamic Systems [ M]. New York: Prentice Hall, 1989.
  • 10[14]CHU Chengbin, PROTH J M, WOLFF P. Predictive maintenance:The one-unit replacement model [ J ]. Int J Production Economics,1998, 54(3): 285 - 295.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部