期刊文献+

基于经验模态分解的光纤陀螺随机序列平稳化处理 被引量:7

FOG Random Sequence Pretreatment Using Empirical Mode Decomposition
下载PDF
导出
摘要 采用AR模型等时间序列分析方法对光纤陀螺随机误差进行建模前需要对传感器输出序列进行平稳化检验和处理。引入经验模态分解法,对低精度光纤陀螺输出序列进行平稳化处理,采用逆序法检验平稳化处理的效果,引入偏态和峰态系数对随机系列进行正态性检验,并与小波分析等方法进行比较实验。结果表明:经验模态分解法不仅能有效去除陀螺输出信号的趋势项,还能提高信号的正态性。处理后的信号可以采用AR模型进行建模。 The FOG output sequence must be tested and treated before modeling with AR model.The empirical mode decomposition(EMD)method is introduced for removing the trend term of nonstationary random sequence.An inversed order method is used to check the effect of EMD method,and the skew value and kurtosis value are also introduced for normality test.The experiment indicates that the EMD method can not only eliminate the trend term of nonstationary random sequence,but also improve the normal natures of the nonstationary random sequence.The treated random sequence can be formulated by AR model.
出处 《传感技术学报》 CAS CSCD 北大核心 2011年第10期1440-1444,共5页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金青年教师项目(40904004) 江苏省普通高校研究生科研创新计划项目(CX10B_142Z)
关键词 光纤陀螺 经验模态分解 逆序法 自回归模型 FOG(Fiber Optic Gyroscope) empirical mode decomposition inversed order method AR(Auto Regression)model
  • 相关文献

参考文献12

二级参考文献50

共引文献91

同被引文献79

引证文献7

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部